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Kapitel 1

Einleitung

Durch die Entdeckung von Quasikristallen[Sea84| entstanden neue Fragestellungen in Bezug
auf die Strukturbildung und die elektronischen Eigenschaften dieser Systeme. Die ersten ent-
deckten thermodynamisch stabilen Quasikristalle hatten eine icosaedrische Struktur. Diese
Struktur ist in allen drei Dimensionen quasikristallin. Fiir derartige Systeme ist es schwierig
zwischen strukturbedingten und elementspezifischen Effekten zu unterscheiden. Daher war ein
Vergleich der strukturinduzierten Effekte zwischen Kristallen und Quasikristallen kompliziert.

Mit der Entdeckung von dekagonalen Quasikristallen|HWKS87| standen nun Systeme zur
Verfligung, die gleichzeitig eine periodische (in einer Dimension) und eine quasiperiodische
Struktur (in 2 Dimensionen) besafen. Man konnte nun an einem System - bei gleichblei-
bender chemischer Komposition - die Einfliisse der zwei unterschiedlichen Strukturen auf die
physikalischen Eigenschaften untersuchen. Es zeigte sich unter anderem eine starke Anisotropie
verschiedener Grofien.

Im Rahmen dieser Arbeit wurden mittels Computersimulationen und analytischer Be-
trachtungen, die elektronischen Eigenschaften dekagonaler Quasikristalle untersucht. Dabei
wurde im Besonderen das Augenmerk auf die Anisotropie des elektrischen Transports gelegt.
Das primér betrachtete Stoffsystem setzt sich aus Aluminium, Nickel und Cobalt zusammen.
Zu Vergleichszwecken wurden Rechnungen an zwei weiteren Systemen: AICuCo und AIPdCr
durchgefiihrt. Das Hauptaugenmerk der Arbeit liegt auf den gewonnen material- spezifischen
Aussagen. Um die Argumentation nicht unnétig zu unterbrechen, sind die theoretische Ab-
leitungen nur soweit nétig innerhalb der Arbeit zu finden. Eine ausfiihrliche Darstellung der
theoretischen Grundlagen und Probleme ist im Anschlufs an die Arbeit in den Anhéngen vor-
handen.

Zu Beginn sollen die untersuchten Systeme und deren Approximanten im Abbschnitt 2.2
vorgestellt werden. Dabei wird unter anderem auch auf Probleme bei der Gewinnung von Ap-
proximanten eingegangen. Im Anschlufs werden im Abschnitt 2.3 die gewonnen Ergebnisse fiir
die Zustandsdichte und die elektrische Leitfdhigkeit der einzelnen Materialien gezeigt und mit
experimentell ermittelten Werten verglichen. Um nun genauere Aussagen iiber die Ursachen
der gezeigten Ergebnisse machen zu konnen, werden im Kapitel 3 einzlne charakteristische
Ausschnitte mittels der Vielfachstreumethode untersucht.

Auf rein analytischem Wege konnte im Kapitel 4 eine Effekt innerhalb der Elektronendich-
teverteilung auf Basis der Vielfachstreuung untersucht werden. Dabei wird eine der Blochsym-
metrie dhnliche Beziehung zwischen Wellenfunktionen einer rotationssymmetrischen Struktur
benutzt.
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Kapitel 2

Struktur und elektronische
Eigenschaften dekagonaler
Quasikristalle

Zunichst soll in diesem Kapitel ein Uberblick iiber die Struktur der dekagonalen Quasikristalle
und deren Auswirkung auf die elektronischen Eigenschaften gegeben werden. Dabei sollen
die Besonderheiten gegeniiber anderen Quasikristallen, Kristallen und amorphen Systemen
herausgestellt werden.

Im Hinblick auf die Struktur zeichnet sich ein dekagonaler Quasikristalle durch eine peri-
odische und zwei aperiodische Richtungen aus. Damit unterscheidet er sich von ikosaetrischen
Quasikristallen, welche in allen 3 Raumrichtungen aperiodisch strukturiert sind. Dekagona-
le Quasikristalle besitzen also typische strukturelle Eigenschaften eines Kristalles sowie eines
Quasikristalles in einem System. Auf diese Koexistenz soll im Abschnitt 2.1 n&her eingegangen
werden.

Die zwei aperiodischen Richtungen spannen eine Ebene auf, beziiglich deren Normalen
eine 10er Rotationssymmetrie besteht - daher auch der Name ,dekagonale“ Quasikristalle.
Entlang der kristallinen (periodischen) Richtung besteht Translationssymmetrie. Die chemi-
sche Zusammensetzung der dekagonalen Quasikristalle besteht aus zwei Ubergangsmetallen
und einem einfachen Metall. Es handelt sich also um ternire Systeme, wobei die einzelnen
Ubergangsmetalle durch Réntgen- oder Elektronenbeugungsexperimenten nur schwer unter-
scheidbar sind.

Um nun einen geeigneten Approximanten fiir den Quasikristall zu finden, muft der Ap-
proximant so viel wie moglich an Informationen iiber den zugrunde liegenden Quasikristall
enthalten. Entlang der periodischen Richtung wird dies bereits mit der ersten Periode (Ein-
heitszelle) erreicht. Anders hingegen fiir die nichtperiodische Richtung: Hier mufs versucht
werden einen moglichst grofen Bereich zu wahlen, um eine gute Anndherung an den Quasikri-
stall zu erhalten, dabei allerdings setzt die zur Verfligung stehende Rechnertechnik Grenzen.
Desweiteren ist fiir die quasikristalline Ebene (besonders bei kleineren Approximanten) zu be-
achten, dafs ein reprisentativer Ausschnitt gewahlt wird. Auf die innerhalb der Diplomarbeit
verwendeten Approximanten wird in Abschnitt 2.2 ndher eingegangen.

Abschnitt 2.3 beschiftigt sich mit den speziellen elektronischen Eigenschaften der Appro-
ximanten. Diese werden fiir die drei betrachteten System jeweils dargestellt. Innerhalb der
Ausfithrungen werden Vergleiche unter den Materialen vorgenommen, um Unterschiede und
Parallelen aufzuzeigen. Sofern moglich wird ein Bezug zu experimentellen Daten hergestellt.
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2.1 Koexistenz von periodischer und aperiodischer Atomanord-
nung

Durch die Koexistenz von periodischer und aperiodischer Ordnung innerhalb eines Systemes
ergeben sich physikalische Eigenschaften, welche in komplett periodischen oder komplett ape-
riodischen Systemen nicht beobachtet werden kénnen. Besonders hervorzuheben ist dabei die
starke Anisotropie des elektrischen Widerstandes. Fiir die quasikristalline Richtung ist ein
Verhalten wie in ikosaetrischen Phasen zu beobachten (hoher Widerstand - nimmt mit der
Temperatur ab), fiir die kristalline Richtung hingegen besteht ein geringerer elektrischer Wi-
derstand, welcher mit steigender Temperatur zunimmt[KHM97].

Fiir die periodische Richtung ist ein Blochartiges Verhalten der Elektronen aufgrund der
langreichweitige Ordnung zu beobachten. Daraus resultiert eine hohere Leitfahigkeit als fiir
die aperiodische Richtung. In der quasiperiodischen Richtung verhalten sich die Elektronen
nicht Blochartig - vielmehr ist ihr Verhalten mit kritische Zusténden vergeilchbar - dies fiihrt
zu einer stark peakartigen Zustandsdichteverteilung.

2.2 Struktur von Approximanten dekagonaler Quasikristalle

2.2.1 Das Stoffsystem Al-Ni-Co

Das Stoffsystem Al-Ni-Co bildet einen thermodynamisch stabilen und iiber grofe Regionen
des Phasendiagrammes ausgedehnten dekagonalen Quasikristall aus. Untersucht wurde ein
Mischungsverhéltnis von 70% Al, 21% Ni und 9% Co. Diese Legierung besitzt in z-Richtung
eine Periodizitétslinge von ¢ = 4,08 A, in der xy-Ebene ist sie quasiperiodisch mit einem
typischen interatomaren Abstand von ag = 2,45 A. Alle weiteren Abstinde zwischen den ein-
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Tabelle 2.1: Atomare Abstinde im Al-Ni-Co System

zelnen Atomen lassen sich iiber die irrationale Zahl Tau! auf diese beiden typischen Abstinde
zuriickfithren. In Tabelle 2.1 sind die ersten Néachste-Nachbarn-Absténde, deren Darstellung
iiber 7 sowie die Paarverteilung des Systemes angegeben.

Als Grundlage fiir die Berechnung dienten die von Mihalkovic]MALC™02] vorgeschlage-
nen, energieoptimierten Approximanten fiir dieses dekagonale System. Die Energieoptimierung
erfolgt durch Monte Carlo - Simulationen auf Basis von Paarpotentialen. Es wurden drei ver-
schieden grofte Approximanten untersucht. Deren Charakteristik soll im folgenden vorgestellt
werden.

T =721 = Y5l ~ 1618034
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Element KLZ Anzahl Atomprozent
Al 13 34 68
Ni 28 12 24
Co 27 4 8
Richtung Linge in A
X 14,37
y 12,22
z 4,08
Abbildung 2.1: Struktur des Al-Ni-Co Approximanten mit 50 Atomen
Element KLZ Anzahl Atomprozent
Al 13 90 69,23
Ni 28 28 21,54
Co 27 12 9,23
Richtung Linge in A
X 23.25
y 19.78
z 4,08
Abbildung 2.2: Struktur des Al-Ni-Co Approzimanten mit 130 Atomen
Element KLZ Anzahl Atomprozent
Al 13 146 69,52
Ni 28 44 20,95
Co 27 20 9,52
Richtung Linge in A
X 23.25
y 32.00
Z 4,08

Abbildung 2.3: Struktur des Al-Ni-Co Approximanten mit 210 Atomen

Der kleinste untersuchte Approximant fiir das Al-Ni-Co System hat 50 Atome. Seine chemi-
sche Zusammensetzung, die Struktur und seine Abmessungen sind unter Abb. 2.1 dargestellt.
Zu sehen ist ein Schnitt parallel zur xy-Ebene (die kleineren Kreise bezeichnen Atome der
unteren Schicht; grau = Al; schwarz = Ni; blau = Co). Die Parketierung erfolgt hier durch

Hexagone - H-Tiling".
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Der néchst groRere Approximant umfakt 130 Atome (Abb. 2.2). Die Parketierung erfolgt
hierbei durch Hexagone und Sterne - ,HS-Tiling“. Als grofter Approximant wurde fiir das
Al-Ni-Co System ein Cluster aus 210 Atomen untersucht (Abb. 2.3) seine Parketierung erfolgt
durch Boote und Hexagone - , HB-Tiling“.

Am hiufigsten treten innerhalb des Al-Ni-Co Systemes néchste Nachbarschaften zwischen
dem Al und einem Ubergangsmetall auf. Sehr selten treten Nachbarschaften zwischen zwei
gleichen Atomsorten auf. Sofern gleiche Atomsorten sich in nichster Nachbarschaft befinden,
liegen diese nie innerhalb der selben Ebene, sondern unterscheiden sich in ihrer z-Position um
eine halbe Periodizitétsléange.

2.2.2 Das Stoffsystem Al-Pd-Cr

Die Legierung aus Al, Pd und Cr besitzt ebenso eine dekagonale Phase. In der Arbeit wurde
eine orthorhombische kristalline Phase mit einer sehr grofen Einheitszelle als Approximant
fiir die dekagonale Phase benutzt|MYI97]. Diese Verfahren ist insoweit sinnvoll, als die Ein-
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Abbildung 2.4: Schnitte durch den verwendeten Approximanten fir das Al-Pd-Cr System
(braun: Al, tirkis: Pd, blau: Cr)
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heitszelle der kristalline Phase schon so grof ist, wie es filir einen aus der dekagonalen Phase
gernerierten Approximanten der Fall wére. Durch die Verwendung der kristallinen Phase mit
einer grofen Einheitszelle ergibt sich natiirlich ein Fehler. Selbiger ist jedoch genauso grof
wie der Fehler, welcher durch die direkte Gernerierung eines Approximanten aus der dekago-
nalen Phase entstiinde. Gefunden und beschrieben wurde diese orthorhombische Phase durch
Matsuo et al. [MYI97].

Im Anhang F ist die Einheitszelle durch Raumgruppe und Angabe der Besetzung der
Symmetriepunkte beschrieben. Die Abbildung 2.4 zeigt Projektionen des Approximanten auf
die xy-, yz- und xz-Ebene. Desweiteren ist die chemische Zusammensetzung angegeben.

Der Approximant umfafit 156 Atome. Die periodische Richtung entspricht der y-Achse.
Innerhalb der xz-Ebene besitzt der Approximant eine 10-fache Rotationsymmetrie, was auch
sehr schon in der Projektion auf die xz-Ebene zu sehen ist. Die Abmake der Einheitszelle
des Approximanten sind = = 14,73A, y = 12,48A und z = 12,59A. Die Absténde zwischen
néchsten Nachbaratomen (siehe Tab. 2.2) sind vergleichbar mit denen innerhalb des Al-Ni-Co
Systemes.

nichste Nachbarn Abstinde in A

Al-Al 2.67
Al-Cr 2.45
Al-Pd 2.58
Cr-Cr 2.57

Tabelle 2.2: Nachste Nachbarn Abstinde im Al-Pd-Cr System

2.2.3 Das Stoffsystem Al-Cu-Co

Die Legierung aus Aluminium, Kupfer und Cobalt bildet metastabile, aber auch thermody-
namisch stabile dekagonale Quasikristalle aus. Experimentell wurden diese zum Beispiel von
Grushko hergestellt{Gru95]. Auf die Ausbildung einer dekagonalen Phase hat der Anteil des
Kupfers in dem System einen besonderen Einflufs. Innerhalb des Phasendiagramms 14t sich
eine stabile Linie finden|CW98].

Al735-0.50 Cug Co26.5-0.5z 12<z<24 (2.2.1)

Die Struktur der dekagonalen AlICuCo Quasikristalle wurde mittels Rontgenbeugungsexpe-
rimenten untersucht[SK90|. Es wurden mehrere Strukturmodelle vorgeschlagen, zum Beispiel
von Burkov|[Bur91, Bur93|. Diese Strukturmodelle wurden als Ausgangspunkt genutzt, um
periodisch fortsetzbare Approximanten zu erhalten. Burkov hat zwei grundlegende Dreiecke
vorgeschlagen, welche die Strukturinformationen enthalten. Mittels dieser beiden Dreiecke ist
eine flichendeckende Parketierung moglich. Desweiteren hat er Vorschriften zur chemischen
Umdekorierung im Rahmen der Parketierung verfaft.

Zwar ist diese Parketierungsvariante flichendeckend, jedoch lassen sich keine rechteckigen
Patches generieren. Um also einen periodisch fortsetzbaren Approximanten zu gewinnen, mufs-
ten Ausschnitte aus den mittels ,triangle tiling“ gewonnenen Patches gemacht werden. Dies
gestaltet sich durchaus kompliziert, da auf die Faktoren: chemische Komposition, die sich er-
gebenden Strukturen bei periodischer Fortsetzung und Strukturinformationen innerhalb eines
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Approximanten geachtet werden mufl. Es konnten zwei geeignete Ausschnitte mit 60 bzw. 219
Atomen gefunden werden.

In Abb. 2.5 ist der periodisch fortgesetzte Approximant mit 60 Atomen zu sehen. Erkenn-
bar ist sehr gut, wie sich die Ecken des Approximanten durch Fortsetzung wieder zu einer
dekagonalen Zelle zusammenfiigen. Der Approximant ist - genauso wie das von Burkov vorge-
schlagene Patch - beziiglich seiner Struktur zentralsymmetrisch. Der zweite Approximant mit
219 Atomen ist in Abb. 2.6 zu sehen.
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Abbildung 2.5: Projektion des periodisch fortgesetzten AlCuCo-60 Approximant auf die ry-
FEbene (grin: Al, gelb: Cu, rot: Co)

Die Approximanten sind jeweils in z-Richtung periodisch und die xy-Ebene stellt die qua-
siperiodische Ebene dar. Die Periodizitiitslinge in z-Richtung betrigt 4.18 A, die AusmaRe
der Approximanten in der x- und y-Richtung sind in Tab. 2.3 eingetragen.

Richtung Abmessung in A
AlCuCo-60 AlCuCo-219
X 17.00 32.76
y 12.26 24.87
z 4.18 4.18

Tabelle 2.3: Abmessungen der beiden Al-Cu-Co Approximanten

Die chemische Zusammensetzung der Approximanten (Tab. 2.4) entspricht nicht genau Gl.
2.2.1, sie liegt jeweils knapp daneben (weniger als 5 Atomprozent). Dieses Problem lies sich
jedoch nicht besser 16sen, da die primére Forderung die periodische Fortsetzbarkeit war.
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Abbildung 2.6: Projektion des Al-Cu-Co Approzimant mit 219 Atomen (grin: Al, gelb: Cu,
rot: Co)

Element KLZ Anzahl Atomprozent Anzahl Atomprozent
AlCuCo-60 AlCuCo-219

Al 13 42 70.0 139 63.47

Cu 29 9 15.0 41 18.72

Co 27 9 15.0 39 17.81

Tabelle 2.4: Chemische Komposition der beiden Al-Cu-Co Approximanten
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2.3 Elektronische Eigenschaften der dekagonalen Systeme

Die elektronischen Eigenschaften eines Systems lassen sich sehr gut durch seine Zustandsdichte,
die rdumliche Verteilung der Ladungstriger und der elektrischen Leitfdhigkeit charakterisie-
ren. Diese drei Merkmale wurden innerhalb der Arbeit fiir verschiedene dekagonale Systeme
untersucht.

2.3.1 Zustandsdichteverliufe und Valenzelektronendichteverteilung

Zunichst soll kurz auf die typischen Verldufe der Zustandsdichte des sp- bzw. d-Bandes eines
Metalles sowie eines Ubergangsmetalles eingegangen werden.

Unter Metallen versteht man die sp-gebunden Hauptgruppenelemente der I, IT und III
Hauptgruppe. Deren Bandstruktur und Zustandsdichte ist vergleichbar mit der eines freien
Elektronengases. Fiir das s- und p-Band ergeben sich also parabelférmige Zustandsdichten. Das
Pseudopotential, welches ein Valenzelektron von einem Metall wahrnimmt, ist schwach, vergli-
chen mit dem eines Ubergangsmetalles[Sut93]. Die Zustandsdichte der Ubergangsmetalle ist
von dem Resonanzverhalten der d-Elektronen geprégt. Der typische Verlauf der Zustandsdich-
te des sp- bzw. d-Bandes einer freien Atomkugel eines Ubergangsmetalles ist in der Abbildung
2.7 dargestellt. Durch die Einbettung der freien Ubergangsmetalle in eine Umgebungsmatrix
erfolgt eine Aufspaltung des d-Resonanzpeaks in der Zustandsdichte.

d-Band

Zustansdichte

sp-Band

E

Abbildung 2.7: Typische Ubergangsmetallzustandsdichte

Nach dem Hume-Rothery Bild erfolgt die Stabilisierung von Metallegierungen durch
ein Pseudogap bei der Fermienergie, welches durch die Berithrung der Fermiefliche und
der 1. Brillouion-Zone hervorgerufen wird[HRR62]. Das heift, fiir unterschiedliche Phasen
(amorph,fcc,hep) erfolgt die Stabilisierung bei unterschiedlichen Verhéltnissen aus der Anzahl
an Valenzelektronen(GroRe der Fermikugel) und den Atomabstdnden. Der Effekt dieses Pseu-
dogaps wird in der Zustandsdichte innerhalb eines Energiebereiches von ca. 1 €V sichtbar.
Allerdings sind viele weitere Peaks und Téler in den Zustandsdichten der einzelnen Approxi-
manten zu beobachten. Diese Effekte werden der Verteilung bzw. Lokalisierung der Elektronen
innerhalb des Approximanten zugeschrieben. Auf die Gestalt des Pseudogaps hat die Hybridi-
zierung zwischen den Aluminium sp-Zustéinden und den Ubergangsmetall d-Zustinden einen
starken EinfluffKHMO00].
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2.3. ELEKTRONISCHE EIGENSCHAFTEN DER DEKAGONALEN SYSTEME

Allgemein 186t sich die Zustandsdichte definieren als:

D(E) =) 4(E - Ep) (2.3.1)
n

Auf der Basis von Greenfunktionen ergibt sich fiir die lokale Zustandsdichte eines eingebetten

Atoms:

k R ) ZTsL,sL
_ m
D(E) = le(zz + 1);/617« A 1+ RE 2 (2.3.2)
0

Eine ausfiihrlichere Herleitung dieser Formel wird im Anhang A gegeben. Die Grofe Ty, o1/
bezeichnet die Streumatrix, welche durch Losung des Vielfachstreuproblems gewonnen wird.
Ihre genaue Definition ist im Anhang A angegeben. Fiir die Berechnung der Zustandsdich-
te werden nur die Diagonalelemente der Streumatrix bendtigt. Unter Verwendung der Zu-
standsdichte des nicht eingebetteten Atoms D% (F) iRt sich die Formel zur Berechnung der
eingebetteten Zustandsdichte vereinfachen zu:

Z TsL,sL

Dy(E) =) D}(E)[1+® % (2.3.3)
l

Die lokale Zustandsdichte einer eingebetteten Atomkugel ergibt sich also aus der Summe der
nichteingebetteten Atomkugel und einem Riickstreubeitrag aus der Umgebung, welcher auch
negativ werden kann. Fiir einen negativen Beitrag aus der Riickstreuung ergibt sich also eine
Verringerung der Zustandsdichte. Sofern dies fiir einen ausgedehnten Energiebereich der Fall
ist, folgt fiir die Elektronendichteverteilung eine Verringerung innerhalb des entsprechenden
Raumgebietes (Elektronendichteldcher).

Zur Berechnung der Zustandsdichte der einzelnen Approximanten wurde ein an der hiesigen
Professur entwickeltes ASA-LMTO? Programmsystem verwendet[Arn97], dessen Basis das
LMTO Programm der Andersongruppe am MPI Stuttgart bildet [And]. Eine Einfiihrung in
die theoretischen Grundlagen der LMTO-Methode wird im Anhang D gegeben.

Sofern im Text nicht anders angegeben wurden alle LMTO Rechnungen als Halbraumrech-
nungen mit einem k-set ny = 4 durchgefiihrt{Arn92|. Das k-set 4 verwendet 2048 k-Punkte zur
effektiven BZ-Integration, dabei wird keine Reduktion auf 1/48 des Raumes durchgefiihrt. Dies
ist notwendig, da die Reduktion auf 1/48 nur fiir die Symmetrie einer kubischen Einheitszelle
moglich ist. Die Energieeigenwerte wurden mittels einer Gaussglocke verbreitert (o = 15meV).

Die Verteilung der Valenzelektronendichte wurde mittels des Programmpaketes
,ADbinit“|GBC*02| ermittelt und durch das Programm XCrySDen|Kok99| dargestellt (siehe
auch Anhang E). Im Rahmen des ,Abinit“ Programmes werden mittels Entwicklung in einer
Ebenenwellenbasis Lésungen fiir die Schrodingergleichung unter Vorgabe der entsprechenden
Pseudopotentiale und der Systemstruktur gesucht.

2.3.2 Elektrische Transporteigenschaften

Wie schon angesprochen, wird fiir die periodische Richtung innerhalb des dekagonalen Quasi-
kristalles ein metallisches Verhalten fiir die elektrischen Transporteigenschaften erwartet - im
Gegegensatz zu der aperiodischen Richtung. Von Martin et al.[MHKT91| wurden Messungen

2(A)tomic (S)phere (A)pproximation - (L)inear (M)uffin (T)in (O)rbital
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KAPITEL 2. STRUKTUR UND ELEKTRONISCHE EIGENSCHAFTEN
DEKAGONALER QUASIKRISTALLE

der elektrischen Leitfahigkeit fiir die Systeme Al-Ni-Co und Al-Cu-Co durchgefiihrt. Diese
Messungen bestétigen das Erwartungsbild. In Abbildung 2.8 sind die Ergebnisse aufgetragen.
Er fand ein Verhéltnis fiir die Anisotrophie von pgper/pper von rund 10 fiir 4.2 Kelvin und
rund 6 fiir 600 Kelvin.

I I I 70
§ 340 <§
< <60 - -
. 330 g
g i 50 — a
£320 <
< =
E s
g; 310 g 40 — _
S 3
= S
N | | | \ \ | |
= 3000 200 400 600 300 200 400 600
Temperatur T in K Temperatur T in K

Abbildung 2.8: Ezperimentell Widerstandswerte fir AlzgNij5Co1s [MHKTI1]

Um nun theoretisch Aussagen iiber die Leitfdhigkeit eines Systemes mit starken Streu-
ern (Ubergangsmetallen) machen zu kénnen, ist die Einfachstreuniherung (Ziman-Formel
[Zim61]) nicht mehr befriedigend. Mit Hilfe der Kubo-Greenwood-Formel ist eine geeignete
Auswertemoglichkeit auf Basis von Vielfachstreuung gegeben [Kub57, Gre58|.

mhe?

v

&uw(E) =2 > (|6, |99 ) (W6, |E)6(E — E;)6(E — Ej) (2.3.4)

0.
Hier bezeichnet V das Volumen und |\Il’>, |\Ilj > die FEigenfunktionen des gegebenen Systemes
zu den Energieeigenwerten F; ;. Der Vorfaktor 2 beriicksichtigt beide Spinkomponenten. Der
Geschwindigkeitsoperator in Richtung p wird mit 4, bezeichnet.
Zur Herleitung der Einstein-Relation aus Gl. 2.3.4, welche die spektrale Leitfdhigkeit &
mit der Zustandsdichte D(E) und der Diffusivitat D(FE) verkniipft, wird der sogenannte Spek-
traloperator p(E) eingefiihrt. (siche [Cus87])

p(E) = |WI)§(E — E;) (| (2.3.5)
J

Damit 14t sich Gleichung 2.3.4 mittels des Spektraloperators umformen zu:

mhe?
\%4

&(E) =2 > (|6, p(E) b,|TE)S(E — E;) (2.3.6)

2

Aufgrund der Eigenschaft des Geschwindigkeitsoperators hermitisch zu sein gilt: |¥)% = |0®).
Dadurch folgt:

- nhe? T o

5(B) =2-; > (9,9 p(E) |6, ¥)5(E — E;) (2.3.7)
i

Da der Ausdruck (f)u\Iﬂ" p(E) |13,,\I’i> auf der Energieschale E; nahezu konstant ist, kann

sein Mittelwert vor die i-Summe gezogen werden. Durch Abspaltung der Zustandsdichte
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2.3. ELEKTRONISCHE EIGENSCHAFTEN DER DEKAGONALEN SYSTEME

- —F
D(E) = Y,6(E — E;) und der Diffusivitit D(E) = nh(6,%%| p(E) |6, ¥*) folgt die
Einstein-Relation.

o(E) = 26_;D(E)D(E) (2.3.8)

Wie zu erwarten steigt die Leitfdhigkeit mit wachsender Anzahl von Zustdnden oder zuneh-
mender Mobilitdt der Ladungstrager.

Um nun allerdings Vergleiche mit experimentellen Daten ziehen zu konnen, wird die tem-
peraturabhingige Leitfdhigkeit bendtigt. Diese ergibt sich aus einer Mittelung der energieab-
héngigen Leitfdhigkeit iiber der Energieableitung der Fermiverteilung.

00 (T) = / dE (‘%) 0,0 (E) (2.3.9)

Das heiftt, fiir geringe Temperaturen tragen nur die Zustinde bei der Fermienergie zum
Leitungsprozess bei. Mit steigender Temperatur kénnen nun auch Zustédnde aus tieferen Ener-
gien als der Fermienergie angeregt werden - und so zusétzlich einen Anteil zum Leitungsprozess
liefern. Da dies jedoch eine Mittelung darstellt? bedeutet die Zunahme der Zusténde, welche
zum Leitungsprozess beitragen nicht zwingend eine Zunahme der Leitfdhigkeit mit steigender
Temperatur.

2.3.3 Das Stoffsystem Al-Ni-Co

Fiir die drei angesprochenen Approximanten des dekagonalen Al-Ni-Co Systems wurden zu-
néchst die Zustandsdichteverldufe bestimmt. Die Ergebnisse sind in der Abbildung 2.9 dar-
gestellt?. Zunichst ist erkennbar, daf sich fiir die s-Béinder jeweils parabelférmige Verliufe
im Bereich kleiner Energien ergeben. Fiir das p-Band 14t sich gleiches Verhalten feststellen,
nur das hier die energetisch tiefstgelegenen Zustdnde rund 1,5eV hoher liegen als fiir das s-
Band. Das d-Band hingegen beginnt nochmals rund 2eV héher. Der d-Resonanzpeak in der
Zustandsdichte der freien Atomkugel eines Ubergangsmetalles spaltet durch die Einbettung
in eine Umgebung auf einer Breite von ca. 3eV mit drei Hauptpeaks auf.

Um die Herkunft dieser drei Hauptpeaks zu bestimmen, sind jeweils iber den Graphen noch
die elementspezifischen Zustandsdichten des d-Bandes fiir die Ubergangsmetalle aufgetragen.
Die Resonanzlage des d-Bandes liegt fiir Co bei ca. -1.5eV und fiir Ni bei ca. -2.5eV. Die
Aufspaltung der d-Bénder erfolgt jeweils in der Weise, dafs der obere Peak des Nickels etwa
bei der selben Energie liegt wie der untere Peak des Cobalts. Damit ergeben sich drei Peaks
in der Gesamtzustandsdichte, wovon der Mittlere der hichste ist.

In allen Kurven ist ein ca. 1€V breites stabilisierenden Pseudogap zu erkennen, welches
nicht glatt, sondern mit schmaleren (<100meV) aber tiefen Téalern versehen ist. Besonders
schon ist dies bei dem 130 und dem 210 Approximanten zu erkennen. Die Tatsache, dak die
Fermienergie nicht genau in der Mitte dieser tiefen Einbriiche der Zustandsdichte liegt, ist
in kleinen Fehlern der LMTO-Rechnung zu suchen. Hervorzuheben sind hier Abbruchbedin-
gungen, deren Wahl kritisch fiir die Lage der Fermienergie ist. Einen Uberblick iiber einige
Kennzahlen der Verldufe gibt die Tabelle 2.5.

Zum Vergleich der berechneten Zustandsdichteverldufe mit experimentellen Daten
wurden hochauflésende Photoemissionsspektren[SZTI95, SPG197] sowie mittels weicher
Rontgenspektroskopie[BFDF196] ermittelte Spektren genutzt. Einen breiten Uberblick iiber

®Das Integral von —oo bis oo iiber die Ableitung der Fermiverteilung ist Eins
*Fiir den Approximanten mit 210 Atomen konnte nur ein k-Set nx = 3 verwendet werden
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Abbildung 2.9: TDOS der Al-Ni-Co Approzimanten und LDOS der Ubergangsmetalle (oben:
50 Atome, mittig: 130 Atome, unten: 210 Atome)
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2.3. ELEKTRONISCHE EIGENSCHAFTEN DER DEKAGONALEN SYSTEME

Er beziigl. Viyro D(EF) in d-Resonanz beziigl. Er / eV
Approximant in eV states/atoms/eV Ni Co
50 10,91 0,156 2.1 141
130 9,71 0,196 2,51 -1.31
210 10,08 0,209 -2,58 -1.78

Tabelle 2.5: Kennzahlen der DOS des Al-Ni-Co Approzimanten

die elektronischen Eigenschaften verschiedener dekagonaler Systeme gibt ein Artikel von Kra-
jci, Hafner und MihalkoviclKHMO00]. Die XPS/UPS-Messungen zeigen einen breiten Peak bei
ca. -1.4eV beziiglich der Fermienergie. Das Ni d-Band und das Co d-Band liegen fiir die ex-
perimentellen Messungen ca. bei der selben Energie. Im Vergleich dazu zeigen unsere mittels
LMTO berechneten Zustandsdichten 3 einzeln aufgelofite Peaks. Dabei ist die Lage des Co d-
Bandes vergleichbar mit den experimenttelen Werten, allerdings liegt das berechnete d-Band
des Nickels ca. 1 €V tiefer.

Die Aussage von Krajci, daf das d-Band des Nickels eine Verschiebung zu héheren Energie,
als das d-Band des Cobalt erfihrt, konnte nicht bestétigt werden. Zwar erfolgt eine Verschie-
bung des Ni d-Bandes zu hoheren Energien, im Vergleich zum freien Ni Atom, jedoch keine
so starke.

Durch die Kenntnis der Anzahl an Zustdnden bei einer bestimmten Energie lassen sich
jedoch keine Riickschliisse auf die rdumliche Verteilung der Elektronendichte ziehen. Zu die-
sem Zweck wurde das ,,Abinit“ Programm verwendet. In den Falschfarbenabbildungen 2.10
sind drei verschiedene Schnitte durch den Approximanten mit 130 Atomen dargestellt, welche
jeweils die Verteilung der Valenzelektronen auf der Schnittebene darstellen. Rot steht dabei
fiir eine hohe Konzentration - die weifsen Bereiche kennzeichnen eine mittlere Dichte und blaue
Regionen sind fast frei von Ladungsdichte.

Elektronendichte BEOODO
in Elektron/Kubikangstrdom 0,02 0,03 0,04 0,05 0,08

Abbildung 2.10: Valenzdichteverteilung des Al-Ni-Co Approrimanten mit 130 Atomen
(vinr.: Schnitt durch die obere, untere Ebene und Seitenansicht von 8 gestapelten Approzi-
manten)(hellblau: Al; gelb: Ni; lila: Co)
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Betrachtet man die Abbildung 2.10, so erkennt man einige wichtige Charakteristika fiir die
Elektronendichteverteilung innerhalb eines dekagonalen Quasikristalles - hier im besonderen
fiir das AINiCo System. Augenfillig ist zunsichst die hohe Dichte um die Ubergangsmetalle.
Dies ist einleuchtend, da selbige eine hohere Anzahl an Valenzelektronen haben als Aluminium.

Desweiteren gibt es im Zentrum der einzelnen Pentagone (sofern dieses Zentrum nicht
mit einem Atom besetzt ist) Elektronendichteminima. Dieser Effekt beruht nicht einzig und
allein auf der Tatsache, dafs das Zentrum nicht mit einem Atom besetzt ist. Es ist vielmehr
eine Figenschaft der rotationssymmetrischen Struktur des Pentagons, sein Zentrum frei von
Elektronendichte zu halten. Siehe dazu auch Kapel 4.

Viele Bereiche lassen sich finden, in denen ein Al-Atom zwischen zwei Ubergangsmetallen
oder in der Mitte eines Dreieckes aus Ubergangsmetallen liegt. Fiir diese Fille bilden sich
zwischen den Ubergangsmetallen und dem Al-Atom Briicken aus Elektronendichte aus. Es
liegt die Vermutung nahe, dafies sich hierbei um kovalente Bindungen handelt.

Besonders schon ist auch die ausgezeichnete Rolle des Pentagons bei der Strukturbildung
der dekagonalen Quasikristalle zu sehen. Auf dem linken Bild in Abb. 2.10 ist im linken Bereich
ein Pentagon zu erkennen, welches im Zentrum ein Cobalt Atom hat. An jedes der Al-Atome
auf dem Pentagon kann man sich eine Linie denken, die dann senkrecht auf der Verbindung
zwischen Al-Atom und Zentrum steht. Auf den sich ergebenden fiinf Linien befinden sich
nun jeweils nur Al-Atome im gesamten Bereich des Approximanten. Desweiteren fithren diese
Linie auch jeweils zu einem anderen Pentagon, dessen Ausrichtung sich wiederum an der Linie
orientiert. Der Einfluf des erstgenannten Pentagons ist also in starkem Mafie Strukturbildend
fiir das gesamte System.

Innerhalb des Schnittes, der die periodische Richtung zeigt (linkes Bild), sind Kanéle mit
hoher Elektonendichte und andere mit geringer Dichte zu erkennen. Die Zickzack-Kette aus
Ni-Atomen, welche eine hohe Elektronendichte besitzt, wird im Kapitel 3.3 ndher untersucht.
Sie wird unter anderem fiir eine gute Leitfdhigkeit in der periodischen Richtung und fiir den
Abstand zwischen den beiden quasiperiodischen Ebenen (Periodizitétslinge in z-Richtung)
verantworlich gemacht.

Als néchstes soll auf die richtungsabhéngigen elektrischen Transporteigenschaften der Al-
NiCo Approximanten eingegangen werden. In den Abbildungen 2.11 sind die richtungsab-
héngigen spektralen Widerstdnde aufgetragen. Zu erkennen ist, daf fiir die quasiperiodische
Richtung® (blaue Linien) deutlich hohere Werte bei der Fermienergie fiir den Widerstand auf-
treten als in der periodischen Richtung (rote Linien). Dies gilt bis auf wenige Ausnahmen
iiber den gesamten Energiebereich, besonders stark jedoch bei der Fermienergie. Die stér-
ke der Anisotropie sowie der Widerstand in periodischer und aperiodischer Richtung bei der
Fermienergie sind fiir die drei Approximanten in Tabelle 2.6 eingetragen.

Approximant pp“p% Paper(E-Erp=0) / puQem pper(B-Ep=0) / pdem
50 5 50 10
130 7,5 230 30
210 6 150 25

Tabelle 2.6: Anisotropie des elektrischen Transportes fir die Al-Ni-Co Approximanten

SMittelung iiber die x- und y-Richtung
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Abbildung 2.11: Spektralen Widerstandsverlaufe fir die Al-Ni-Co Approzimanten(blau: ape-
riodische Richtung, rot: periodische Richtung)

Um nun zu temperaturabhingigen Widerstandswerten o(7) zu gelangen, muf die spek-
trale Leitfahigkeit o(E) nach Gl. 2.3.9 mit der Fermiverteilung gefaltet werden. Zuvor wurde
die spektrale Leitfihigkeit mittels eines gleitenden Durchschnittes geglittet®. Die temperatu-
rabhéngigen Widerstandsverldufe sind in Abbildung 2.12 gezeigt, dabei sind die Kurven fiir
T = 1K auf eins normiert. Desweiteren sind in der Abbildung zum Vergleich experimentelle
Widerstandsmessungen|[MHKT91] mit angegeben.

Es ist deutlich zu erkennen, daf die theoretischen Kurven nicht exakt mit den experimentell
gewonnenen Werten iibereinstimmen. Fiir die periodische Richtung gibt es eine starke Diskre-
panz. Innerhalb der aperiodischen Richtung ist die Ubereinstimmung gréfer, jedoch auch nicht
ausreichend. Dies ist auch einsichtig, da innerhalb der gemachten theoretischen Berechnun-
gen Phononen nur phinomenologisch durch Niveauverbreiterung unter der Nebenbedingung
der E—Erhaltung beriicksichtigt werden. Deren Einflufs ist aber mit steigender Temperatur zu-
nehmend bedeutsam und fiihrt in der periodischen Richtung zu einer deutlichen Zunahme des
Widerstandes. Dies kann aber im Rahmen der Kubo-Greenwood-Formel nicht nachempfunden
werden.

Vergleicht man die Absolutwerte des Widerstandes bei Temperaturen nahe Null Kelvin
(siehe Tabelle 2.7), so erkennt man, daf die theoretisch berechneten Werte des Widerstandes
kleiner sind als die experimentellen Messwerte. Besonders stark gilt dies innerhalb der aperi-
odische Richtung. Offenbar sind die Approximanten noch zu klein, und daher die Anndherung
an die quasiperiodische Struktur nicht gut genug.

5Die Breite des Glittungsintervalles betrug 60meV’
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Abbildung 2.12: Vergleich zwischen experimentellen Widerstandsverldufen und den berech-
neten fir die aperiodische und die periodische Richtung

theoretisch experimentell
Approximant Paper (T = 0K) Pper (T = 0K) Paper (T = 4.2K) pper (T = 4.2K)
AINiCo-50 50 10
AINICo-130 230 30 339 38
AINiCo-210 150 25

Tabelle 2.7: Vergleich exp. / theoret. Widerstinde bei T—0K fir das Al-Ni-Co System

2.3.4 Das Stoffsystem Al-Pd-Cr

Die Untersuchungen der elektronischen Eigenschaften des Al-Pd-Cr Systems wurden in ad-
dquater Weise zu den Untersuchungen des Al-Ni-Co Systemes durchgefiihrt. Zunédchst konnte
die Zustandsdichte fiir dieses System ermittelt werden (siche Abb. 2.13)
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Abbildung 2.13: TDOS des Al-Pd-Cr Approzimanten mit 156 Atomen und LDOS der Uber-
gangsmetalle
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Es zeigt sich ein deutlich anderer Verlauf der totalen Zustandsdichte fiir das Al-Pd-Cr
System gebeniiber dem Al-Ni-Co System. Die d-Bander der Ubergangsmetalle haben einen
deutlich geringeren Einfluk. Dies liegt zum einen an der chemischen Zusammensetzung (im
Al-Pd-Cr System ist der Anteil des Aluminium um rund 10 Atomprozent héher) zum anderen
an der energetischen Lage der Ubergangsmetall d-Resonanzen (siehe Tab. 2.8). So liegt die
d-Resonanz fiir Chrom in der Ndhe der Fermienergie. Durch das sich ergebende d-d-Splitting
der Chromatome erfolgt eine Minimierung der Zustandsdichte im Bereich der Fermienergie.
Auch der stark peakartige Verlauf der Zustandsdichte ist Ergebnis des d-d-Splittings der Chro-
matome. Dies erkennt man auch durch Vergleich der totalen Zustandsdichte mit der lokalen
Zustandsdichte des Chrom d-Bandes. Das d-Band der Paladiumatome ist zwar - wie man in der
LDOS erkennt - stark ausgeprigt, da Paladium allerdings nur einen Anteil von 5 Atomprozent
hat, ist der Einfluf auf die totale Zustandsdichte nur gering.

EF beziigl. Vo D(EF) in d-Resonanz beziigl. Er / eV
in eV states/atoms/eV Pd Cr
10,88 0,350 -0,7 4.1

Tabelle 2.8: Kennzahlen der DOS des Al-Pd-Cr Approximanten

Abbildung 2.14 zeigt die Valenzdichteverteilung fiir einen Schnitt parallel zur xz-Ebene.
Die Ubergangsmetallatome zeichnen sich durch eine hohe Elektronendichte in ihrer nahen
Umgebung aus. Fiir die Aluminiumatome erkennt man, daf sie (sofern sie nicht direkt in ein
Pentagon eingebunden sind) als Briickenatome zwischen zwei Ubergangsmetallen fungieren.
Dies deutet sehr schoén auf eine Hypridisierung zwischen den sp-Elektronen der Al-Atome und
den d-Elektronen der Ubergangsmetalle hin.
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Abbildung 2.14: links: Projektion des Approzimanten auf die yz-Ebene - rechts: Valenzdich-
teverteilung (Schnitt parallel zur xz-Ebene; braun: Al, tirkis: Pd, blau: Cr)

Desweiteren sind Dichteoszillationen erkennbar, die als Friedeloszillationen der Elektro-
nendichte gedeutet werden, was auf einen elektronisch stabilisierten Festkérper hindeutet.
Derartige Festkorper weisen eine Verstarkung des elektrischen Widerstandes auf. Dies kann
durch die ermittelten Widerstandsverldufe bestétigt werden. Die richtungsabhéngigen spek-
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tralen Widersténde sind in Abbildung 2.15 dargestellt.
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Abbildung 2.15: spektraler Widerstandsverlauf des Al-Pd-Cr Approzimanten

Zunichst zeigt sich im Vergleich zum Al-Ni-Co System ein deutlich héherer Widerstand
(siehe Tabelle 2.9). Innerhalb der aperiodischen Richtung ist der Widerstand’ ca. um den
Faktor 6 hoher - in der periodischen Richtung ergibt sich sogar ein Faktor von ca. 30. Weiterhin
ergibt sich eine geringere Anisotropie zwischen dem Leitungsverhalten in periodischer bzw.
aperiodischer Richtung.

Der zu grofe Widerstand deutet auf eine zu schlechte k-Raum Behandlung hin. Der genutzt
Approximant hat in periodischer Richtung eine deutlich gréfsere Ausdehnung, als fiir das Al-
Ni-Co System. Dadurch ist wére ein groferes k-Set notig um den korrekten Widerstand fiir
die periodische Richtung zu erhalten.

p;:;r paper(EF) / pQem ppeT(EF) / udem
1.56 1250 800

Tabelle 2.9: Anisotropie des elektrischen Transportes fir den Al-Pd-Cr Approximanten

Es zeigt sich also, dak eine periodische Struktur nicht zwangsldufig einen geringen Wider-
stand hat. Fiir den betrachteten Fall ergibt sich, aus der elektronischen Stabilisierung und
Hybridisierungseffekten zwischen sp-Al und d-Ubergangsmetall Zustinden, ein schlechtes Lei-
tungsvermdgen in periodischer Richtung.

2.3.5 Das Stoffsystem Al-Cu-Co

Zur Bestimmung der Materialeigenschaften des Al-Cu-Co Systems wurde das Programmpaket
LADbinit*  verwendet. FEine Verwendung des LMTO-Programmes konnte nicht erfolgen, da
selbiges Programm hohe Anforderungen an eine raumfiillende Parketierung stellt. Zur Losung
diese Problemes hitten innerhalb des Al-Cu-Co Approximanten Leerkugeln® eingefiigt werden
miissen.

Ein Vergleich der Zustandsdichten zwischen den beiden Approximanten ist in Abbildung
2.16 zu sehen. Durch die Verwendung des ,,Abinit“ Programmes konnten keine drehimpuls-
spezifischen und auch keine atombezogenen Zustandsdichten ermittelt werden. Fiir den Ap-
proximanten mit 60 Atomen erfolgte eine periodische Fortsetzung im Rahmen der ,Abinit“-
Rechnungen - im Fall des Approximanten mit 219 Atomen war dies nicht mehr mdglich.

fiir E = Ep bzw. T = 0K
8Unter einer Leerkugel versteht man in diesem Zusammenhang eine Atomkugel, welche keine Elektronen in
das System einbringt, nicht am Streuprozess teilnimmt aber zur Raumfiillung beitragt
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Abbildung 2.16: links: Zustandsdichte der beiden Al-Cu-Co Approximanten; rechts: Ver-
gleichsrechnung von Haerle[HK98]

Desweiteren ist rechts in der Abbildung 2.16 eine mittels ASA-LMTO bestimmte Vergleichs-
rechnung von Haerle[HK98| zu sehen.

Zunéchst fallt auf, dafs sich die beiden Approximanten in ihren Zustandsdichten doch stark
unterscheiden. Fiir den Approximanten mit 219 Atomen ergibt sich eine bessere Ubereinstim-
mung mit der Vergleichsrechnung. Es muf festgestellt werden, dafs der Approximant mit 60
Atomen trotz der periodischen Fortsetzung keine geeignete Berechnung der Zustandsdichte
ermdglichte. Dies mag zum einen daran liegen, dafs der Ausschnit zu klein gew#hlt wurde,
zum anderen an dem hohen Aluminiumanteil (70 Atomprozent) der um ca. 7 Atomprozent
hoher liegt als fiir den Approximanten mit 219 Atomen.

Fiir beide Approximanten wurde kein Pseudogap gefunden - dies deckt sich mit anderen
Arbeiten|[HK98|]. Im Bereich von —1leV bzw. im Bereich von —5eV ist jeweils eine Erhéhung
der Zustandsdichte zu beobachten. Diese werden mit den d-Resonanzen der Ubergangsmetalle
in Verbindung gebracht. Dabei hat das Kupfer das energetisch tiefer liegende d-Band. Dies
deckt sich mit den XPS/UPS von Stadnik[SPGT97]. Er gibt fiir das System AlgsCu15Co09
die Lage des d-Bandes mit £ — Er = —4.2eV an.
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Abbildung 2.17: Valenzdichteverteilung der Al-Cu-Co Approzimanten mit 60 Atomen (vinr.:
Schnitt durch die obere, untere Ebene und Seitenansicht von 8 gestapelten Approximan-
ten)(grin: Al gelb: Cu, rot: Co)
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In Abbildung 2.17 sind drei Valenzdichteschnitte durch den Approximanten mit 60 Atomen
dargestellt. Sehr schén zu erkennen ist, wie sich die 10-fache Rotationssymmetrie auf die
Dichteverteilung auswirkt. Desweiteren ist auch fiir dieses Stoffsystem festzuhalten, dafl die
Aluminiumatome als Briickenatome zwischen den Ubergangsmetallatomen wirken. Der Schnitt
entlang der periodischen Richtung zeigt - dhnlich zu dem Al-Ni-Co System - Kanéle mit hoher
Dichte sowie Kanile mit geringer Dichte. Dabei sind wiederum Zickzack-Ketten zu sehen,
welche fiir die Koppelung der einzelnen dekagonalen Ebenen verantwortlich sind.
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Kapitel 3

Untersuchung einzelner Ausschnitte
mittels Vielfachstreuung

Im nachfolgenden Kapitel soll nun - mittels des Streuformalismus - der elektrische Widerstand
einzelner typischer Subcluster aus den verschiedenen Approximanten untersucht werden. Da-
bei sollen insbesonderem die Ursachen der Anisotropie des elektrischen Transportverhaltens
aufgezeigt werden. Hierbei ist es notig, nicht nur die Diagonalelemente der Streumatrix T'sz, 57,
- wie fiir die Zustandsdichte - auszuwerten, sondern die Streumatrix wird vollstéindig bendtig
um mittels der Kubo-Greenwood-Formel den Leitfdhigkeitstensor o, bestimmen zu kdnnen.
Eine kurze Ableitung dieser Widerstandsberechnung soll in Abs. 3.2 gegeben werden. Aus-
fithrlich erfolgt dies im Anhang B.

Zunichst soll jedoch eine Vorstellung der einzelnen untersuchten Subcluster in Abs. 3.1
erfolgen. Im Anschluss an die theoretischen Grundlagen werden dann in Abs. 3.3 die sich
ergebenden spektralen Widerstandsverldufe diskutiert.

3.1 Die untersuchten Subcluster

In der periodischen Richtung gibt es hauptséchlich zwei Strukturkonstellationen, die einen
erwartungsweise geringen elektrischen Widerstand haben sollten. Dabei handelt es sich um
das Pentagon und um Zickzack-Ketten aus Nickelatomen. Innerhalb der beiden aperiodischen
Richtungen wurden verschiedene Ketten mit quasikristallinem Widerstandsverhalten unter-
sucht.

Abbildung 3.1 zeigt die verschiedenen untersuchten pentagonalen Strukturen. Die Pen-
tagone wurden jeweils zu einer Sdule gestapelt' und der spektrale Widerstand durch diese
Saulen mittels Vielfachstreuung ermittelt. In Abbildung 3.2 sind die drei betrachteten Aus-
schnitte zu sehen, welche benutzt wurden, um die quasikristalline Richtung innerhalb der
AlINiCo-Approximanten zu untersuchen. Die Mittellinie entspricht dabei der x- oder y-Achse
der Approximanten. Es wurde jeweils aus dem 50-, 130- und 210-Approximanten ein Aus-
schnitt gewahlt.

Die interatomaren Abstdnde wurde zu Testzwecken teilweise gedndert, allerdings sind die
dargstellten Ergebnisse ausschliefslich mit den gleichen Abstédnden, wie im realen System ge-
wonnen worden.

!durch periodische Fortsetzuung in z-Richtung
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Abbildung 3.1: Verschiedene pentagonale Strukturen aus dem Al-Ni-Co System(grin: Al,
blau: Ni, braun: Co)

Abbildung 3.2: Ausschnitte aus der quasikristallinen Richtung der Al-Ni-Co Approzimanten
(grim: Al, blauw: Ni, braun: Co)

3.2 Berechnung der Kubo-Greenwood-Formel mittels Vielfach-
streuung

Ziel ist es, die Kubo-Greenwood-Formel (KGF) in eine Form zu bringen, die mittels der Me-
thode der Vielfachstreuung computergestiitzt numerisch auswertbar ist. Eine ausfiihrliche Be-
trachtung dieser Ableitung wird in Anhang B gegeben. Es sollen hier nur die groben Schritte
und das allgemeine Prinzip erldutert werden. Der spektrale Leitfdhigkeitstensor sei nach der
Kubo-Greenwood-Formel geben durch:

nhe?
\%4

& (E) =2 > (o, | B ) (W6, | ) (E - E;)S(E — Ej) (3.2.1)

6,

Dabei bezeichnen die Indizes p und v die betrachteten Richtungen. Es werden die Wellenfunk-
tionen |\Ili’j > zu den Energieeigenwerten F;; betrachtet. Der Vorfaktor 2 beriicksichtigt die
beiden Spinkomponenten. Mit 4, wird der Geschwindigkeitsoperator in p-Richtung bezeich-
net. Unter Einfithrung der Greenfunktion und der Superzellenmethode 14t sich fiir sphéarisch
symmetrische Streuer die KGF umformen. Dabei erfolgt eine Entwicklung in Drehimpulskom-
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ponenten.

Der Imaginéarteil der Greenfunktion ist dabei unter Entwicklung nach Drehimpulskomponenten
gegeben durch:

- 2m 1 -
x + = 7 — € o (7 - t * 7
3 (G Lo (7 ,E)) K [ = ] > JR,L(r) (I +5(T+T )) P JR,’L,(r )
_ (3.2.3)
Definiert man nun eine dimensionslose Geschwindikeitsmatrix @ und eine hermitische Streu-

matrix § = (I + (T + T)), so laft sich mit Hilfe von Spurbildung der Leitfshigkeitstensor
ausdriicken.

Qo) = T [ #1000 (3.2.4)
Qri@) = T [ T,
2
61 B) = G Tr (Q"(Eu P)S(F)Q (&, F)S(F)) (3.2.5)

Diese Form des Leitfahigkeitstensors ist nun unter Zuhilfenahme von Ewaldsummationsme-
thoden berechenbar. Die Diskussion der Ewaldmethode erfolg im Anhang B. Zur Eliminierung
von offenen Streuwegen, welche aus der Superzellenmethode folgen, werden geeignete k-set’s
gewahlt sowie ein Ddmpfungsfaktor eingefiihrt. Jener approximiert zugleich eine gewisse Un-
ordung und Temperatureinfluft innerhalb des Materials.

3.3 Widerstandsverhalten der untersuchten Subcluster

An dieser Stelle sollen die sich ergebenden spektralen Widerstandskurven fiir die einzelnen
Subcluster gezeigt und diskutiert werden. Innerhalb der Berechnungen wurden Streuphasen
verwendet, die aus den vorherigen LMTO-Rechnung fiir den gesamten Approximanten stam-
men.

In der Abbildung 3.3 sind die sich ergebenden spektralen Widerstandsverldufe fiir die
flinf untersuchten Pentagone zu sehen. Dabei ist in der Abbildung die energetische Lage der
Fermienergie? sowie der d-Resonanz der Ni-Atome eingezeichnet.

Fiir die Leitfahigkeit des Subclusters ist der Widerstand bei der Fermienergie o(Er) maR-
geblich, die ermittelten Werte sind in Tabelle 3.1 eingetragen. An den Wiederstandsverldufen
féllt zundchst auf, dak fiir geringe Energien (unter 6eV’) die Pentagone eine hohe Leitfahigkeit
besitzen. Desweiteren ergibt sich im Bereich der d-Resonanz der Ni-Atome ein schneller An-
stieg des Widerstandes, umfafit eine Gréfenordnung. Fiir das Pentagon 5 ist dies besonders
ausgeprigt, da es die héchste Anzahl von Ni-Atomen hat. Der Anstieg des spektralen Wider-
standes erfolgt fiir das Pentagon 2 bei einer um ca. 0.5 eV hoheren Energie, da die energetische
Lage der Resonanz der Co-Atome um den selben Betrag hoher liegt als bei den Ni-Atomen.

2Er und die Lage der d-Resonanz der Streuphasen stammen aus den LMTO-Rechnungen fiir den gesamten
Approximanten
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Abbildung 3.3: spektraler Widerstandsverlauf der pentagonalen Subcluster aus den Al-Ni-Co
Approzimanten

In periodischer Richtung wurden Widerstandswerte von ca 25 ufdcm - im Rahmen der
LMTO-Rechnungen - fiir den gesamten Al-Ni-Co Approximanten ermittelt. Durch die Uber-
bewertung der Ubergangsmetalle in der chemischen Zusammensetzung gegeniiber dem Appro-
ximanten ergeben sich die groferen Widerstinde der Subcluster. Dies ist auch am Pentagon
2 zu sehen. Da hier ein geringerer Anteil von Ubergangsmetallen vorliegt, ergibt sich eine
deutlich bessere Leitfahigkeit.

o(Er) Anzahl
Pentagon in pQlem Al-Atome Ni-Atome Co-Atome
1 75 8 3 0
2 27 7 0 1
3 40 8 3 0
4 45 9 2 0
5 67 6 5 0

Tabelle 3.1: Widerstand der pentagonalen Subcluster bei Ep

Die zweite untersuchte Strukturkonstellation in der periodischen Richtung der Al-Ni-Co
Approximanten sind die Zickzack-Ketten aus Ni-Atomen. Der ermittelte spektrale Wider-
standsverlauf ist in Abbildung 3.4 dargstellt. Zunéichst fillt der hohe Widerstand fiir geringe
Energien auf. Dies erklirt sich leicht, da es sich um Ubergangsmetalle handelt, deren Lei-
tungsprozesse primér mit hoheren Drehimpulskanéilen (1=2) verbunden sind. Im Bereich der
hoherer Energien (>6eV) insbesondere bei der Fermienergie, ergibt sich jedoch eine deutlich
geringerer Widerstand von ca 20uflcm.

Damit ist der elektrische Widerstand dieser Ni-Zickzack-Struktur vergleichbar mit der fcc-
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Phase des Nickel. Es wurde vergleichsweise der spektrale Widerstand fiir fcc-Ni berechnet. Die
sich ergebende Kurve ist nahezu deckungsgleich mit der Zickzack-Anordnung, der Widerstand
ist lediglich noch etwas geringer. Fiir die Fermieenergie wurden 7u{lcm ermittelt, dieser Wert
stimmt mit experimentellen MeRwerten® iiberein.

Das Vorhandensein von Ubergangsmetallen ist also nicht zwingend (wie bei den pentago-
nalen Strukturen) verantwortlich fiir einen hohen Widerstand. Vielmehr ist die strukturelle
Anordnung der Ubergangsmetalle verantwortlich fiir ihre elektrischen Transporteigenschaften.
Der leichte Anstieg des Widerstandes bei der d-Resonanz der Ni-atome deutet auf eine Loka-
lisierung der Elektronen zwischen den Ni-Atomen hin. Dies wird durch die, mit ,abinit* fiir
den Al-Ni-Co Approximanten ermittelten, Elektrondendichteverteilungsbilder gestiitzt.
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Abbildung 3.4: spektraler Widerstandsverlauf der Zickzack-Kette aus den Al-Ni-Co Appro-
rimanten

Die Darstellung der sich ergebenden spektralen Widerstandsverldufe der untersuchten Aus-
schnitte aus der quasiperiodischen Richtung erfolgt in Abbildung 3.5. In Tabelle 3.2 sind die
ermittelten Widersténde bei der Fermieenergie fiir die drei Ausschnitte sowie fiir den gesamten
Approximanten einander gegeniibergestellt.

o(Er) in pQem

Ausschnitt gesamter Approximant
AINiCo-50 110 50
AINiCo-130 85 230
AINiCo-210 95 150

Tabelle 3.2: Vergleich der Widerstinde fiir den Ausschnitt und den gesamten Approzimanten
des AINiCo Quasikristalls

3Quelle: goodfellow - Groflieferant fiir Industriemetalle
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Abbildung 3.5: spektraler Widerstandsverlauf der quasiperiodischen Subcluster aus den Al-
Ni-Co Approximanten

Erkennbar ist, dak die Widerstdnde zwar deutlich {iber den fiir die periodische Richtung
liegen, jedoch nicht die Werte fiir den jeweiligen gesamten Approximanten erreichen. Dies ist
allerdings urséchlich in der Untersuchungsmethode, da sich links und rechts des Ausschnittes
ein Vakkuum befindet, innerhalb des Elektronenwellen nicht gestreut werden. Fiir ein zwei
oder drei dimensionales System ergibt sich daher zwangsweise ein hoherer Widerstand, als fiir
diese diinne Kette, die als eindimensional angesehen werden kann.

Abhilfe fiir diese Problem liese sich dadurch schaffen, daff man um die Kette einen perfekt
reflektierende Mantel legt. Dadurch wiirden alle Wellen zuriickreflektiert werden und konn-
ten sich nicht durch das angrenzende Vakkuum ausbreiten. Diese Reflektion liese sich durch
symmetrisch zu den gegebenen Atomen angebrachte ,Bildatome* simulieren.

3.4 Zusammenfassung

Fiir die AINiCo Approximanten konnte sowohl in der periodischen als auch in der aperi-
odischen Richtung Ausschnitte gefunden werden, die fiir das kristalline bzw. quasikristalline
Transportverhalten verantwortlich sind. Die Ergebnisse decken sich mit dem Gedanken, daf
in der periodischen Richtung gewisse Kanile existieren die eine hohe Leitfihigkeit besitzen,
jedoch nicht der gesamte Quasikristall in der periodischen Richtung eine hohe Leitfdhigkeit
besitzt.

Fiir die Simulation des elektronischen Transportverhaltens in der aperiodschen Richtung
ergibt sich, daf eine Reduktion der Dimension von 2D auf 1D, eine deutliche Verringerung
des Widerstandes mit sich bringt. Umgekehrt zeigen zum Beispiel ikosaedrische Quasikristalle
- welche in allen 3 Dimensionen aperiodisch sind - einen deutlich héheren elektrischen Wider-
stand.

* Algs.5sCuze.s Fern: paax = 3700uQem [PBBT93]
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Kapitel 4

Auswirkung der Rotationssymmetrie
auf die Elektronendichte im
Rotationszentrum

Mittels der Methodik der Vielfachstreuung werden nun typische Subcluster aus den unter-
suchten dekagonalen Quasikristallen ndher untersucht werden. Innerhalb der verschiedenen
Approximanten treten unterschiedliche Pentagons mit unterschiedlicher Gréfe und chemischer
Zusammensetzung auf. In der Elektronendichteverteilung ist erkennbar, dafs die pentagonale
Struktur in der Lage ist, in ihrem Zentrum die Elektronendichte zu minimieren. Im folgenden
soll nun untersucht werden, ob es sich hierbei um ein typisches Verhalten fiir rotationssysm-
metrische Strukturen handelt oder ein einzigartiges Verhalten des Pentagons.

4.1 Anwendung des Streuformalismus auf die pentagonale
Struktur

Gegeben sei eine planare Struktur aus fiinf equivalenten Atomen, welche ein Pentagon bildet. In
addquater Weise zur Blochbeziehung im Kristall, laft sich auch hier eine Symmetriebedingung
fiir die Beziehung der einzelnen Wellenfunktionen untereinander finden. Die Herleitung dieser
Blochsymmetrie fiir rotationssymmetrische Strukturen wird im Anhang C gezeigt. Sofern die
Anregung vom Zentrum aus mit einer s-Welle erfolgt, gilt zwischen den sich einstellenden
Feldern auf dem Pentagon folgende Beziehung:

Uypy =Ty e -DFM (4.1.1)

Untersucht werden soll nun, inwieweit die Elektronendichte im Zentrum des Pentagones durch
diese spezielle Symmetrie beeinflufit wird. Die sich ergebende Amplitude am Zentrum setzt
sich aus einer Summe iiber die einzelnen Atome der Struktur zusammen.

Yoo = Z Poo,sz Fy V1L, il m (4.1.2)
s,L

Dabei bezeichnet der Index s die Atompostion und L = (I,m) den betrachteten Drehimpulska-
nal. Die Matrix P - genannt Propagator - beschreibt die Ausbreitung der Welle vom Atomort
s' im Kanal L' zum Zentrum im Kanal Null. Unter Zuhilfenahme der Rotationssymmetrie 148t
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sich der Propagator vereinfachen zu:
Poo,sr = Pooar eils' —1Fm’ (4.1.3)

Setzt man diesen Propagator jetzt in Gleichung 4.1.2 ein, erhélt man die Riickstreuamplitude
im Zentrum. Ist deren Realteil kleiner Null, erfolgt eine Elektronendichteminimierung, fiir
einen Wert gleich minus Eins eine génzliche Ausléschung.

Yoo =5 Z Poo, 1 Fr¥ypy (4.1.4)
LI

Um nun die Riickstreuamplituden ¥y, fiir die Atome des Pentagones zu erhalten wird im
Zentrum eine ,eins“-Welle gestartet (beschrieben durch den Propagator Pi, o). Diese Test-
welle erméglicht die Untersuchung des Streuverhaltens der Struktur. Damit ergibt sich am
Atomort 1 eine Amplitude aufgrund der einfallenden Felder vom Zentrum und den Atomorten
2 bis 5:

5
Uiz =P+, ), PipypFpe DT, (4.1.5)
s'=2 L/

Die benutzte Diagonalmatrix F' gibt mittels der Streuphasen 7; die Streuamplitude des Atomes
im Drehimpulskanal L wieder.
Fy = ie"™ sin(ny)

Die bereits angesprochen Propagatoren sind durch die Matrix P gegeben, in welcher die

Gaunt-Koeffizienten T'(L, L, L') eine Auswahl der méglichen Uberginge zwischen den Dre-
himpulskanilen L' und L vornehmen. Die Hankelfunktionen h%l)

Ausbreitung.

beschreiben die eigentliche
Pipgr =1 —89) Y T(L, L, LD (7 - r3) (4.1.6)
L
Definition der Gaunt-Koeffizienten:
(L, L, L)) = Var [dQ Y1Y; Y}
Die Aufteilung der Hankelfunktionen in Radial- und Winkelanteil:
WD - rg) = iVarhl) (i - v |) Y (7 - rer)

Definition der Kugelflichenfunktion:

B il (2041 (1 —

Aufgrund der gegebenen Symmetrie 1aft sich die Teilsumme iiber s’ in Gleichung 4.1.5 in zwei
verschiedene Félle unterscheiden:

|m)! d™l ' o
\ria|)! dEI7 Pi(t) . (sind; )l o1

i(s! 2m ! il 1\ 27T
Vi = Pipoo + E Fp¥ g E P1L,s'L'€_Z(S —DEm 4 E Py gpe (') m
L —2,5 s'=3,4
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4.1. STREUFORMALISMUS FUR PENTAGONALE STRUKTUREN

3m.

Fiir den ersten Fall (s’ = 2,5) ergibt sich mit ¢19 = —d15 = —55:

(! 27, !
E Pipgpe 0T =
§'=2,5

ZF(L’E’Ll)il—\/lﬁhgl)(Arl,g)(—l)lmlz_m\/2l 41 (;
Z

(e—i(m?—g—km’%") T ez‘(mf‘l—ngm'%"))

Fiir den zweiten Fall (s’ = 3,4) mit ¢1,3 = —¢1,4 = — 1% ergibt sich:

(ol 2 !
> Pipgpe DI =
§'=3,4

ZP(L’fiaL’)if\/Ehlﬁl)(Arl,s)(—1)"h'T"h\/2l+ 1 (;
7

47

?))

Setzt man diese beiden Summen nun in das Vielfachstreuproblem ein, so erhdlt man eine exakte
Formulieren mit eingearbeiteter Rotationssymmetrie. Diese Gleichung ist dann allerdings zu
komplex, als dafs sie rein analytisch ausgewertet werden konnte. Daher erfolgt eine numerische
Auswertung.

Es wurden zwei verschiedene Pentagone berechnet. Ersteres mit Aluminiumatomen auf
dem Pentagon, zweiters mit Nickelatomen. Fiir die Abstdnde wurden charakteristische Werte
aus dem AINiCo-Approximanten eingesetzt. Die Abbildungen 4.1 und 4.2 zeigen die Realteile
der Riickstreuamplituden in den Drehimpulskandlen Eins bis Drei fiir ein Atome auf dem
Pentagon sowie die Realteile der Riickstreuamplitude im Zentrum fiir den Drehimpulskanal
Null.

(éﬂm%+w%w+%ﬂm%+m

0.5 0.5 | ‘
3 - - 3 L ol
.‘§ 03 Al-Atom :::: 0.3+ Zentrum _|
) C = & - 4
§ 01— PSS § 0.1 ]
£ -01+ ] 2 _&1f_‘*“‘-\&\\\ﬁ‘_¥_____ﬁ___f;
% B =0 ] < i =0 _|
g —03F =1 S =03+ -
- _0-5* ' | J . | o _0_57 I | ! ]

- 6 8 10 12 4 6 8 10 12

Energie E in eV Energie E in eV

Abbildung 4.1: Rickstreuamplitude fir das Pentagon aus Al-Atomen (links: Atom des Pen-
tagons; rechts: Zentrum)

Zu erkennen ist, daf sich fiir ein mit Aluminiumatomen besetztes Pentagon ein betragsma-
Rig geringeres Riickstreufeld einstellt, als bei einer Besetzung mit Nickelatomen. Dies erschliefst
sich leicht aufgrund der Tatsache, daf es sich bei Nickel um einen starken Streuer handelt,
welcher eine starke Anderung der d-Streuphase besitzt.

Betrachtet man die Riickstreuamplitude im Zentrum, so sollte diese iiber einen breiten
Energiebereich Werte kleiner Null - moglichst nahe minus Eins - haben, damit sich eine Elek-
tronendichteminimierung im Zentrum des Pentagons einstellt (siehe Gleichung 2.3.3). Fiir das
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KAPITEL 4. ROTATIONSSYMMETRIE UND ELEKTRONENDICHTEVERTEILUNG

1.0 T T
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Abbildung 4.2: Rickstreuamplitude fiir das Pentagon aus Ni-Atomen (links: Atom des Pen-
tagons; rechts: Zentrum)

Pentagon, welches mit Nickelatomen besetzt war, ist dies bei Energiewerten grofer 7eV der
Fall. Fiir den Fall mit Aluminiumatomen ergibt sich {iber den gesamten Energiebereich eine
Minimierung, jedoch ist dies weniger stark.

Diese geringere Wirkung bei Besetzung mit Aluminuiumatomen steht etwas im Kontrast
zu den mit jabinit“ ermittelten Elektronendichteverteilungen. Hier ergeben sich deutlich aus-
geprigt Minima der Elektronendichte im Zentrum der pentagonalen Struktur. Aus diesen
unterschiedlichen Befunden kann man schlussfolgern, daf die Atome auf dem Pentagon nicht
die alleinige Ursache fiir den Minimierungseffekt darstellen, sondern das es sich hierbei um die
Wirkung des gesamten 72° Sektors handelt. Zur Untersuchung dieser Vermutung wurden nun
effektive Streuphasen konstruiert, die den gesamten Sektor approximieren sollen.

4.2 Effektive Streuer mit einem Drehimpulskanal

Um die pentagonale Struktur rein analytisch untersuchen zu kénnen, werden nun zwei Ver-
einfachungen bzw. Annahmen gemacht. Zum einen werden effektive Streuphasen konstruiert,
welche den gesamten 72° umfassenden Sektor effektiv darstellen sollen. Zum zweiten werden
Streuer angenommen, die nur innerhalb eines Drehimpulskanales Elektronen streuen, betrach-
tet wurde also ein effektiver “s-Kanal“. Damit vereinfachen sich die Streugleichungen (siehe
Gl. 4.1.4 und 4.1.5) wie folgt:

Uy = 5P FT, (4.2.1)
U, = Pig+2P ,FU +2P 3FT,

Ty = 5h{) (k5 Arg1)FT, (4.2.2)
U, = hgl)(li Arig) +2F (h(()l)(lﬁ', Arig) + hél)(n Ar173)> Ty
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4.2. EFFEKTIVE STREUER MIT EINEM DREHIMPULSKANAL

Insgesamt ergibt sich im Zentrum ein Riickstreufeld ¥:

2
5 (h(()l)(ﬁ ATO,l)) F
o — - - (4.2.3)
1-2F (ho (k Ary2) +hy ' (5 ATI,?»))

Zwischen den drei typischen Abstdnden im Pentagon bestehen die folgenden Zusammenhéange:

7"1,2 = 7“1}0” % (5 — \/g) (4.2.4)
T3 = T104/ % (5 + \/5)
1,3 5+ \/5

71,2 B 5—+/5
Setz man die Streuphasen und die exakte Gleichung fiir die Hankelfunktion ein so erhélt man

—5i sin(n) e2ikr1,0tin

Uy = — . - (4.2.5)
T
Fiir die effektiven Streuer werden d- 3
. T
typische Streuphasen angenommen. Durch 7
die Annahme dieser Streuphasen soll effek- .
tiv der Einfluf des gesamten 72° Sektors = 5
angendhert werden. .
T 4
n(E) = arctan(10(E — 0.5)) + 5
0

2 4 6 8 10 12
E / eV

Fiir die interatomaren Absténde zwischen Niachstennachbarn wurde ein Wert von 2.4
Angstréom angenommen, was den typischen Werten innerhalb der Quasikristalle entspricht.
Damit lassen sich nun energieabhéngige Verldufe fiir das Riickstreufeld im Zentrum des Pen-
tagons berechnen.

Die gesamte hier gezeigt Ableitung fiir das Pentagon wurde ebenso fiir andere rotations-
symmetrische Strukturen in gleicher Art und Weise durchgefiihrt. Fiir ein Quadrat ergibt sich
damit zum Beispiel die folgende Riickstreuamplitude im Zentrum des Quadrates:

T, = —4i sin(y) MO (4.2.6)
(HTI,O)Q (1 __ €esin(n) (2\/§eiI€T1,2 + einr1,3)>

KT1,0
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KAPITEL 4. ROTATIONSSYMMETRIE UND ELEKTRONENDICHTEVERTEILUNG

Die sich ergebenden Realteile der Riickstreuamplituden im Zentrum der verschiedenen
rotationssymmetrischen Anordnungen sind in Abb. 4.3 dargestellt.

o.s| \ /N |
Re (¥) 0 A \
—— Hexagon
-0.5y Pent agor
~—— Viereck
Dr ei eck
-1l ‘ ‘ ‘ ‘ ‘ ]
2 4 6 8 10 12

Abbildung 4.3: Riickstreuamplituden verschiedener rotationssymmetrischer Anordnungen

Erkennt wird, daf sich fiir geringe Energien im Bereich von ca. 2ev eine Verstdrkung
des Riickstreufeldes gegeniiber der Testwelle ergibt. Im Energiebereich der Resonanz der d-
typischen Streuphasen (ca. 6eV bis 8eV') ergibt sich eine unterschiedlich starke Minimierung
der Testwelle durch das Riickstreufeld.

Das Pentagon nimmt also keine ausgezeichnete Rolle gegeniiber anderen rotationssymme-
trischen Strukturen, in Bezug auf die Moglichkeit sein Zentrum frei von Elektronendichte zu
halten, ein. Vielmehr ist die konkrete Struktur der einzelnen Sektoren und deren chemische
Dekorierung (beide Faktoren beeinflussen die effektiven Streuphasen) verantwortlich fiir die
Minimierung der Elektronendichte im Zentrum.

34



Kapitel 5

Zusammenfassung

Ziel der Arbeit war es, die Anisotropie des elektrischen Transportes in Approximanten de-
kagonaler Quasikristalle ndher zu untersuchen. Um dieses Ziel zu erreichen, wurden zu-
néchst mittels LMTO Rechnungen die Zustandsdichteverldufe bestimmt. Auf Basis der Kubo-
Greenwood-Formel konnten unter Verwendung der LMTO-Ergebnisse die richtungsabhingigen
elektrischen Transporteigenschaften der Approximanten bestimmt werden. Im Anschluf wur-
den spezielle Ausschnitte der Approximanten mittels Vielfachstreumethoden néher untersucht,
um den konkreten Einfluf einzelner Teilbereiche auf die Transporteigenschaften zu bestimmen.

Die berechneten Zustandsdichteverldufe zeigen, daf die d-Resonanzen der Nickel- und Co-
baltatome, im Gegensatz zu UPS-Messungen[SPGT97|, nicht bei der selben Energie liegen.
Fiir das d-Band des Nickels wurde eine um ca. ein Elektronenvolt tiefere Lage ermittelt, als
fiir das Cobaltatom. Dieser Befund steht im Gegensatz zu den Ergebnissen der theoretisch
ermittelten Kurven von Krajc[KHMO00]. Er gibt die Lage der d-Resonanz des Nickels iiber der
des Cobalts an. Die d-Bénder spalten jeweils in zwei Hauptpeaks auf. Im Bereich der Fermi-
energie wurde ein stabilisierendes Pseudogap mit einer Breite von ca. einem Elektronenvolt
gefunden.

Die Starke der Anisotropie des elektrischen Transportes betrégt rund pgper/pper = 7 und
bleibt damit um ca. 25 Prozent hinter den experimentellen Werten fiir das d-AINiCo Sy-
stem zuriick. Die Absolutwerte des elektrischen Widerstandes fiir die aperiodische Richtung
Paper(T = 0K) = 200uQcm sind um ca. 30 Prozent kleiner als die experimentellen Wer-
te. Fiir die periodische Richtung stimmen die Absolutwerte des elektrischen Widerstandes
pper(T = 0K) =~ 30pQcm jedoch gut mit dem Experiment iiberein.

Die ermittelten Temperaturabhéngigkeiten des elektrischen Widerstandes in aperiodischer
Richtung stimmen mit dem Experiment {iberein. Bei Erwarmung des d-AINiCo Systems auf
600K nimmt der Widerstand in aperiodischer Richtung um ca. 10 Prozent ab. Aufgrund der
unzureichenden Beriicksichtigung des Phononeneinflusses (nur durch Verbreiterung der Ener-
gieeigenwerte) konnte der Temperatureinfluff auf den elektrischen Widerstand in der periodi-
schen Richtung nur unzureichend ermittelt werden. In aperiodischer Richtung ist die berech-
nete Temperaturabhéngigkeit ca. um das 5-fache zu klein.

Es konnten sowohl in periodischer wie aperiodischer Richtung Ausschnitte gefunden wer-
den, die durch ihre typischen strukturellen sowie chemischen Eigenschaften fiir eine hohe bzw.
niedrige Leitfdhigkeit verantwortlich sind.

Durch eine analytische Untersuchung der Elektronendichte im Zentrum eines Pentagons
konnte gezeigt werden, daf diese Anordnung in der Lage ist ihr Zentrum frei von Elektronen-
dichte zu halten. Dabei wurde der Einfluf des gesamten vom Zentrum des Pentagons ausge-
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KAPITEL 5. ZUSAMMENFASSUNG

hende 72° Sektor durch effektive Streuphasen angenihert. Desweiteren konnte gezeigt werden,
da® nicht nur das Pentagon, sondern auch dreieckige, viereckige und hexagonale Anordnungen
in der Lage sind, ihr Zentrum frei von Elektronendichte zu halten.

Fortgefiihrt konnte die Untersuchung des Pentagons dadurch werden, daf der Einflufs des
Pentagons auf die Strukturbildung des gesamten Systems néher erforscht wird. In den Elektro-
nendichtebildern sind ausgehend von den Pentagons Verbindungslinien zu den benachbarten
Pentagons zu erkennen. Diese Verbindungslinien sind symmetrisch angeordnet! und abwech-
selnd mit Al-Atomen bzw. Elektronendichteminima besetzt. Man kénnte zum Beispiel diese
Verbindungsebenen als Netzebenen im Sinne der Bragg-Gleichung auffassen und mit Hilfe
eines ebenen Wellenansatzes untersuchen, unter welchen Bedingungen sich konstruktive be-
ziehungsweise destruktive Interferenzen ergeben.

fiinffache Rotationssymmetrie
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Anhang A

Berechnung der Zustandsdichte einer
eingebetteten Atomkugel auf Basis der
Greenfunktion

Die elektronische Zustandsdichte D(E) eines Systemes lafst sich aus den Energieeigenwerten
FE, dieses Systemes bestimmen.

D(E) =) _§(E - Ep) (A.0.1)

In die Berechnung der lokalen Zustandsdichte Dy (e) gehen nicht nur die entsprechenden Ei-
genwerte der Energie, sondern zusétzlich die Gewichtung der Aufenthaltswahrscheinlichkeit
der Elektronen im Gebiet V ein.

D.(E) = Y 8(E - ) [ 7o) (A.0.2)
n v

Fiir die Zustandsdichte 18t sich ein allgemein giiltiger Zusammenhang mit dem Greenschen
Operator finden. Dieser Zusammenhang 145t sich durch die nachfolgende Umformung herleiten.
Dabei wird € — 0 angenommen. Mit dieser Annahme l4ft sich die Lorentzfunktion durch die
d-Funktion ersetzen.

At _ ) (n|
G'(E) = Zm (A.0.3)

E—FE, . €
_ gn]n) (n] - ((E_En)2+62 _Z(E—EH)QJFGZ)

= R {G’+(E)} —ir Y In) (n] - 8(E — By,)

Wie zu erkennen ist, besteht zwischen der Zustandsdichte und dem Greenschen Operator
folgender Zusammenhang.

D(E) = —%Sp [s{¢"®)}] (A.0.4)
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ANHANG A. BERECHNUNG DER ZUSTANDSDICHTE EINER EINGEBETTETEN
ATOMKUGEL AUF BASIS DER GREENFUNKTION

In Analogie dazu ergibt sich fiir die lokale Zustandsdichte:

Dy(B) = —%/d?’f"%{G*(F,F,E)}
14

—%Spv [S{G*(F,7,E)}] (A.0.5)

Mittels dieser allgemeingiiltigen Formel kann also nun auf Grund der Kenntnis der Green-
funktion aus der Streutheorie fiir ein spezielles System die Zustandsdichte einer eingebetteten
Atomkugel berechnet werden.

k R ZTSL,SL
D%(E) = Z(zz + 1);/dr (r JI(r)? |1+ R % (A.0.6)

¢ 0
Die Streumatrix Ty, o1, ist dabei geben durch (sieche Angang B):

Topop = e (sL|(I — PF)"'P|s'L")e"s'v (A.0.7)
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Anhang B

Auswertung der
Kubo-Greenwood-Formel mittels
Vielfachstreuung

In diesem Anhang soll eine Méglichkeit zur Auswertung der Kubo-Greenwood-Formel auf Ba-
sis der Vielfachstreumethode vorgestellt werden. Dabei wird im Abschnitt B.1 zunéchst die
Streutheorie allgemein sowie die Entwicklung der Greenfunktionen fiir Muffin-Tin Streuer er-
ldutert. Der Abschnitt B.2 zeigen dann die Ableitung der Kubo-Greenwood-Formel, mittels
der Streutheorie, zur Berechnung der Transporteigenschaften. Im AbschnittB.3 wird dann das
Supperzellenkonzept eingefiithrt, mit welchem Oberflicheneffekte eliminiert werden. Deswei-
tern wird auf die speziellen Problemen der numerischen Umsetzung eingegangen (Ewaldsum-
mationsmethode, Démpfungslinge und k-Sets).

B.1 Grundlagen der formalen Streutheorie

Zur Beschreibung der Wechselwirkung einer Elektronenwelle mit einem Streupotential, eignet
sich die quantenmechanische Streutheorie. Die Eigenfunktionen |y, ) des gegebenen Problemes
werden von der Schrodingergleichung beschrieben:

H|tpn) = Ey|tpn) (B.1.1)

Der volle Hamiltonoperator H 158t sich aus dem Hamiltonoperator des ungestérten Problems
~ 0

H und dem zusétzlichen Streupotential V' nach:
A=A +v (B.1.2)

. . . . 0 . .
konstruieren. Die Losung des ungestorten Problems H |¢g> = E2|7,bg> sei dabei \¢g> Durch
Parametrisierung der Energieeigenwerte mit £ = k , Substitution von zh—ZlV mit U und der

. 50 . . .
Definition von H = A geht man zu atomaren Rydberg-Einheiten {iber.

(B-B) ) = Uly) (B.1.3)

Diese umgeschriebene Schrodingergleichung 1d#t sich unter anderem durch Benutzung des
Greenschen Operators 16sen. Eine ausfiihrliche Einfiilhrung sowie Anwendungsbeispiele fin-
det man zum Beispiel in dem Buch von Gonis, ,Green Functions for ordered and disordered

41



ANHANG B. AUSWERTUNG DER KUBO-GREENWOOD-FORMEL MITTELS
VIELFACHSTREUUNG

Systems“[Gon92].

G, = (E:l:iO—fIO)_l (B.1.4)
G = (E:l:z’O—fIO—U)_l

Damit ergibt sich eine gednderte Form der SGL, welche als Lippmann-Schwinger-Gleichung
bekannt ist.

At
%) = [9)° + G Ulw) (B.1.5)
In dieser Darstellung der SGL 14ft sich das Streubild bereits anschaulich diskutieren. Die
reguliren Wellen |1)® werden durch die das Potential U mit einlaufende (-) bzw. auslaufende

(+) Streuwellen G’OiUhp) iiberlagert.
Unter der Annahme eines Streupotentials mit geringer Wirkung, kann als Néherung fiir
die Losung der Wellenfunktion |1) geschrieben werden:

At
[v) = [$°) + G~ U|4°) (B.1.6)

Die Bestimmungsgleichung fiir den Greenschen Operator erhilt man durch Umformung der
beiden Gleichung B.1.4. Es ergibt sich die Dyson-Gleichung:

. A4\ -1 -1

G = ((GSE) - U) (B.1.7)

G = G, +G UG, + G UG UG
Der Greensche Operator in Energie- und Ortsdarstellung

Um den Greenschen Operator in Energiedarstellung zu bringen, wird jeweils eine ,Eins* in
Form der Energie-Eigenfunktionen des ungestdrten Systemes von links bzw. rechts an den
Operator multipliziert.

Gy = 3 e (wn| Gy [ (v (B.1.8)

8
I

3 |wn) (B0 — EY) " Snm (3|

a1 ,lpn ,l/)n
GoB) = 2, E|’:|:0i2)<— (;E‘g

n

Durch Projektion in den Ortsraum erhélt man einen Zusammenhang zwischen der Green-
. — A+ . . .
funktion G(7,#, E) und dem Greenschen Operator G, welcher ja einen Hilbert-Operator
+

darstellt.
GEE) = /d3F/ P |G, D)) (7

Damit 148t sich die Lippmann-Schwinger-Gleichung (Gl. B.1.5) und die Dyson-Gleichung (Gl.
B.1.7) in integraler Form schreiben:

(B.1.9)

B = PO+ / B GE (7,7, U () 0(7) (B.1.10)

G 1) = Go# )+ / Bt Go(F, v U () G(r, 77)



B.1. GRUNDLAGEN DER FORMALEN STREUTHEORIE

Die Gestalt der Greenfunktion selbst richtet sich nun nach der Art des Potentiales und dem
Verhalten der Streuer. Werden zum Beispiel héhere Drehimpulsanteile gestreut bzw. vom
Streuer erzeugt.

Ableitung der Greenfunktion fiir ein System von Muffin-Tin
Streuern

Zur Untersuchung eines Systems von Atomen mittels Vielfachstreuung muf die Greensche
Funktion dieses Systemes in Drehimpulskomponenten L = (I,m) entwickelt werden. Dabei
sollen die einzelnen Voronoizellen durch volumengleiche Kugeln mit dem Mittelpunkt R und

den Radien s B ersetzt werden.

Die Basislosungen (X = J, H*) fiir die Entwicklung sollen von der folgende Form sein.

Xp(Fg) = it Xi(sr ) Yim(7 ) (B.1.11)
Es erfolgt also eine Seperation in den Radialteil X; der Gesamtfunktion und den winkelab-
héngige Anteil (beschrieben durch die Kugelflachenfunktionen ¥; ).

Fiir das Potential der einzelnen Atomkugeln soll ein Muffin-Tin Potential (MT-Potential)
angenommen werden. Innerhalb der MT-Kugel soll ein rein sphérisches Potential - zwischen
den einzelnen MT-Kugeln ein konstanter Potentialverlauf V{** vorliegen. Die Streueigenschaf-
ten der einzelnen MT-Kugeln in dem jeweiligen Drehimpulskanal werden beschrieben durch
Streuphasen 7 B

Durch die Definition des gegebenen Potentiales konnen jetzt geeignete Funktionen be-
stimmt werden, welche der SGL im Aussenraum' geniigen. Die reguliren Losungen werden
mit J 3 und die singuliren Losungen mit HEY, bezeichnet.

Ry R,
Jz = eiinR’J Jg (kr)+ikfz hY) (k) (B.1.12)
Ry R, R: R,
gt = e Rup) (kr)
R, R,

Die Funktion f I beschreibt dabei die Streuamplituden der MT-Kugel am Ort R im Dre-

himpulskanal {. ,
1 —nz=
. = -¢ Rigin(na
| i sm(nR,l) (B.1.13)
Unter den vorangegangenen Definitionen ergibt sich fiir die Entwicklung der Greenschen Funk-
tion nach Drehimpulskomponenten (7' < r) [SS92]:

+ P _ . -+ * W, * 3
AN E)=- = = HT, S (r! — o - ’
GR,R’(T’T, ) ’“{5; 5R,R’ R,L(F)JR,L(T )+; (JR,L(F)TRL,R'L’JR’,L'(T )>]
(B.1.14)
Dabei werden die lokalen reguléren Funktionen J B durch die Koeffizienten der Streumatrix

T an das gesamte System angekoppelt. Die Matrix T kann durch das Vielfachstreuproblem
flir Vakuumwellen bestimmt werden.

'Mit Aussenraum sind die Bereiche zwischen den MT-Kugeln gemeint
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ANHANG B. AUSWERTUNG DER KUBO-GREENWOOD-FORMEL MITTELS
VIELFACHSTREUUNG

Emitiert das Atom R im Kanal L' eine singular ,auslaufende” Vakuumwelle, so féillt am
Atom R im Kanal L das Primérfeld ¢0R. ein. Allgemein ergibt sich das Primérfeld durch die
L

Matrix P welche die Propagation beschreibt.

[%°) = P|R'L’) (B.1.15)
U = — — =/ ) ! (A.l) _‘— 3’
¥ Pl 5 D3 (. L,1) (R - ) (B.1.16)

Die eigentlich Streuwirkung der einzelnen MT-Kugeln wird durch die Matrix F' beschrieben,
welche diagonal ist und den einzelnen MT-Kugeln die jeweiligen Streuamplituden f I zuord-

net.
F . == (5-— —/ (5 11 = B117
ARy~ "RE "V IR, (B-1.17)
Durch mehrfache Wiederholung des Streuprozesses (beschrieben durch F') und des anschlie-
senden Ausbreitungsprozesses (beschrieben durch P) wird sich ein resultierendes Feld |¥)
einstellen, welches aus dem Primirfeld |®°) und dem Streufeld PF|¥) aller Atomkugeln
zusammengesetzt ist.

|¥) = |¥°) + PF|¥) = (I - PF)'|¥°) (B.1.18)

Leicht zu sehen ist die Analogie dieser Gleichung zur Lippmann-Schwinger-Gleichung (GL.
B.1.5). Durch Projektion kann nun die Streumatrix T bestimmt werden.

.._.:R< ‘_ —1"'> Rv 1.
TRL,R’L' e Ri(RL|((I - PF)" P|R'L’)e ! (B.1.19)
Innerhalb der Streumatrix sind die Faktoren e fiir den Ubergang zwischen den MT-Kugeln
und dem Vakuum verantwortlich.

B.2 Brechnung der Transporteigenschaften

Das im vorangegangen Abschnitt dargestellte Vielfachstreukonzept gibt die Moglichkeit ge-
nauere Aussagen iiber die Transporteigenschaften von Materialien zu machen als zum Beispiel
die auf Einfachstreuung basierende Ziman-Formel. Insbesondere ist dies fiir stark streuende
Materialen (wie es die Ubergangsmetalle sind) erforderlich, da hier die Einfachstreunsherung
nur noch unzureichende Aussagen iiber die Leitfdhigkeit ermoglicht.

Die Berechnung der elektrischen und optischen Transporteigenschaften soll nun nach der
Kubo-Greenwood-Formel|[Kub57, Gre58] erfolgen. Als Ausgangspunkt dient der spektrale Leit-
fahigkeitstensor &:

nhe?

&u(E) = 27

(%0, | W) (Wi |6, | W) 6(E — E;)§(E — Ej) (B.2.1)
2
Hier bezeichnet V' das Volumen und “I’z>, “I’j > die Eigenvektoren des gegebenen Systemes zu
den Energieeigenwerten E; ;. Der Vorfaktor 2 beriicksichtigt beide Spinkomponenten. %, =

h/(ime)0/0(u,v) bezeichnet die Richtungsableitung des Geschwindigkeitsoperators nach der
Richtung p bzw. v.
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Es soll nun ein Ubergang von der Darstellung in Wellenfunktionen zu einer Darstellung
auf Basis der Greenfunktion des Systemes erfolgen|But85]. Dabei werden die folgenden drei
Beziehungen genutzt und damit der Spektraloperator p eingefiihrt.

A 1 : .
p(E) = -9 (GY(B)) = Z|\Iﬂ>6(E—Ei)<\II’\ (B.2.2)
p(E)|®*) = 6(E — H)|¥%) = E E;)| %) (B.2.3)
I = / B |7)(7]
Damit ergibt sich fiir die spektrale Leitfahigkeit:
he? X X
6u(E) = 2”Ve (Wi|6,p0,|)5(E — E;)
i
. nhe? o :
6uw(E) = 2 v (@ |80, 5| ®*)
i
N whe? 1 3= 3.1 |5 + = ot
6.u(E) = ) R,d'r _,ldr 0,3 GR.,R.,(’I',T,E) (B.2.4)

Die Greenfunktion wird nun nach den Drehimpulskanélen entwickelt (sieche Abs. B.1), an-
schlieftend wird der Imaginérteil davon gebildet.

- 2m 1 -
x + = — e N - t * 7
‘S<GR’R’,(T7T7E)) h;|: hQ :| ZJR,L( ) (I+2(T+T)) — — JR’,L’(T)

s L.L' RL,R’L’
(B.2.5)
Der Vorfaktor [2%&] ergibt sich durch die Verwendung von SI-Einheiten. Der hermetische An-

teil der Matrix T ist % (T + TT). Der so erhaltene Imaginérteil der Greenfunktion wird nun
in die Gleichung fiir die spektrale Leitfdhigkeit eingesetzt. Unter Verwendung der dimensions-
losen Geschwindigkeitsmatrix @ ergibt sich:

G (@) = / &7 T ()87 (7) (B2.6)
Gnp@) = T [ T Ji(P)

swin) = [ S S @@ (14 b))

RAR'~
RiAR 1A ’
1
Gupte) (14 5merh)
R'’,RL
Wenn man § gleich (I + (T + TT)) setzt erhilt man folgende Form:
o B) = O T (@, E)S(E)Q" (@, B)S(E)) (B.27)
o hag 2V T €y €, 2.
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Der Vorfaktor he—; entspricht 1/137uQem und bewirkt fiir die in atomaren bzw. Rydberg
Einheiten einzusetzenden GroRen den Ubergang zu SI-Einheiten.

Auf Basis dieser Gleichung ist es moglich durch Auswertung der Vielfachstreuergebnisse
auf die Leitfahigkeit eines Materiales zu schlieften. Dabei ist zu beachten, daff im Gegensatz
zur Berechnung der Zustandsdichte hier nicht nur einmal das sich einstellende Riickstreufeld
untersucht wird, sondern der Ubergang zwischen zwei derartige Prozesse untersucht werden
mufs.

Berechnung der Geschwindigkeitsmatrix

Gesucht wird eine Form fiir die Geschwindikeitsmatrix @, welche sich in geeigneter Art und
Weise innerhalb eines Computerprogrammes umsetzen 1afst.

Nehmen wir zwei Funktionen ®}, und ®3 definiert, die denn folgenden Bedingungen genii-
gen:

[88: +(E— V(F))] = 0 (B.2.8)

v m-v@) e = 0

Multipliziert man nun die erste Gleichung mit ®g, die zweite Gleichung mit ®7, und bildet die
Differenz zwischen den beiden Gleichung so erhdlt man:

0 0 0
Dr—By — DB | = B.2.9
ar( =28 8o a) 0 ( )

Nach einigen Umformungen erhdlt man unter Zuhilfenahme des Richtungsvektores 7 die fol-
gende Beziehung:

1 " 9 9
= 2 * Py — Dy—BF | — AP Dg| = 3rd O B.2.1
2/SdA [(nf') (qnaanaﬁ (I)’BBF(I)O‘> o’ B] /Vdr a®p (B.2.10)

Dabei wird der Term n®;®3 im ausgedehnten System Null, da sich das Oberflachenintegral
i dA 7 bei der Summierung iiber die einzelnen Voronoizellen aufhebt. Setzt man nun &, =
Jr, und ®5 = Jp ergibt sich bei Seperation nach radialabhéngigen bzw. winkelabhéngigen
Anteilen (da nur iiber winkelabhéngige Anteile integriert wird) der folgende Zusammenhang:

Q=:"""Rys (NI} — JuT)) + 1] /dQ Y/ (A 7)Yy (B.2.11)
Diese Form der Geschwindigkeitsmatrix 18t sich nun computergestiitzt berechnen.
B.3 Einbau periodischer Randbedingungen durch die Superzel-
lenmethode
Durch den Einbau von periodischen Randbedingungen wird es mdoglich Oberflicheneffekte
zu eliminieren. Desweitern kénnen so langreichweitige Effekte mit beriicksichtigt werden. Im

Rahmen der Superzellenmethode wird die gegebene Einheitszelle periodisch in alle Richtung
fortgesetzt. Es ergibt sich ein unendlich ausgedehnter Superkristall.
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Abbildung B.1: Modell eines Superkristalls - schwarz: geschlossender Streuweg - rot: offener
Streuweg

Startet nun von einem Atom in der Grundzelle ein Welle, welche den Grundkristall zu einer
benachberten Zelle hin verldft, so wird aufgrund der gefordeten Periodizitdt auch eine Welle
aus der entgegengesetzten Richtung in den Grundkristall eintreten. Scheinbar emittiert die
Nachbarzelle Z gleichzeitig zur Grundzelle 0 auch eine Welle. Die beiden Wellen unterscheiden

sich lediglich durch eine Phasenverschiebung ikZ.

Fiir die elektronischen Zusténde des Superkristalls besteht Blochsymmetrie. Um nun mit-
tels der Vielfachstreuung Aussagen treffen zu kdnnen, muft das zu konstruierende Primérfeld,
welches uns die Riickstreunung des gegeben Systems liefern soll, auch den Bedingungen dieser
Symmetrie geniigen. .

‘\110(1'5)> — Py ¢kZ|zsL) (B.3.1)
zZ

Um nun die Zustandsdichte der einzelnen Atomkugeln in der Grundzelle bestimmen zu
kénnen ist eine geeignetes Primirfeld nétig. Die Bedinung ist, daf die Uberlagerung der ein-
zelnen Blochwellen “I’O(E)> nur ein Primérfeld in der Zelle Null ergibt.

SUP (‘QO(E)» _ ¢ P|0sL) (B.3.2)

Aufgrund der Linearitdt folgt, daf sich das ergebende Wellenfeld in der Grundzelle auch durch
Superposition ergibt:

1By = SUP(‘\II(E)» (B.3.3)
I®) = /132%“1’(’;:)> (B.34)

Diese Integration iiber die erste Brillouinzone fithrt zu einer gegenseitigen Ausloschung der
virtuellen Quellen. Dadurch werden die storenden Summanden, welche sich aus den offenen
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Streuwegen ergeben, eliminiert. (siche Abb. B.1). Da jedoch eine vollstandige Summation iiber
die Brillouinzone numerisch zu aufwendig wire, werden nur ausgewéhlte k-Werte beriicksich-
tigt. Die Definition dieser speziellen k-Set’s und einer Démpfunglinge werden im néchsten
Abschnitt behandelt.

Diampfungslinge und k-Set’s

Die Einfiihrung einer Ddmpfungsldnge bindet sich an die Einfiihrung der k-Set’s, da durch
die Beschrinkung der Summation auf ausgew#hlte Punkte innerhalb der 1. BZ, nun nicht
mehr alle offenen Streuwege innerhalb der Summation eliminiert werden. Es wird also eine
Déampfungsliange A definiert. Sie fiihrt dazu, da zu den Propagatoren Faktoren der folgenden
Form hinzukommen: .
1247

e A (B.3.5)

Der Dampfungsfaktor sorgt also dafiir, daft die Amplitude von Wellen, deren Ursprung
eine Entfernung von A zum betrachteten Ort haben, um das 1/e-fache verringert wird. Von
der Grofendimension her sollte A nicht kleiner als die Seitenlénge einer Grundzelle des Super-
kristalls gewahlt werden.

Der Grenziibergang A — oo fithrt zu dem ungeddmpften Fall. Der Ddmpfungsfaktor min-
dert den kohérenten Anteil am Gesamtstreufeld, welcher durch die entfernten Atome erzeugt
wird und simuliert damit eine gewisse Unordnung sowie Temperatureinfliifte innerhalb des
Materiales.

Die Auswahl geeigneter k-Set’s k erfolgt nach der Bedingung;:

Zeikz: 0 furdlez: 0<|Z]<A (B.3.6)
k

Je grofer die Anzahl an k-Punkten innerhalb des gewahlten k-Set’s ist, desto grofer ist die
Anzahl der Zellen innerhalb des Superkristalles, aus denen keine fehlerhaften Anteile durch
offene Streuwege zu der Summation iiber die 1.BZ hinzukommen.

Ewaldsummationsmethode fiir Hankelfunktionen

Da die Hankelfunktionen néherungsweise proportional zu 1/r sind, konvergieren Summen tiber
diese Funktionen mit wachsendem r nur schlecht. Dieses Konvergenzproblem wird mit der
Ewaldmethode gelo®t. Nach [AS84] 1akt sich die Hankelfunktion auch durch folgendes Integral
beschreiben:

hl(l)(’m‘&"') — L (Q_T)l L/‘ du ul—1/2 e—ur’+(nk)?/4u (B.3.7)
ink \nk/) /7 Jc

Der Integrationsweg C' in der komplexen Ebene u 1dft sich nun so legen, daft das Integral
in zwei Anteile aufgespalten wird, wovon der Anteil mit grofem u gut konvergiert. Der andere
Anteil wird durch Fouriertransformation in einen gleichfalls gut konvergierenden Reziprokgit-
tersumme umgeformt. Dabei wird ein Trennparameter 7' zwischen den beiden Teilstiicken des
Integrationsweges eingefiihrt. Der langreichweitige Anteil der Hankelfunktion konvergiert fiir
|u| — 0 sofern gilt: 2 arg(n) — 7/2 > arg(u) > 2 arg(n) — 37/2, der kurzreichweitige Anteil
konvergiert fiir |u| — oo sofern gilt /2 > arg(u) > —m/2.

Durch den Trennparameter wird also gleichzeitig beeinfluft ob auf dem kurz- oder lang-
reichweitigen Anteil ein groferes Gewicht liegen soll und welcher der beiden Anteile besser
konvergiert.
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Die Integration des kurzreichweitigen Anteiles erfolgt dabei direkt durch das oben gegebene
Integral. Die Berechnung des langreichweitigen Anteiles erfolgt nach einer Fouriertransforma-
tion.

(1)lang _ i dgq iqr B
h, (nkr) o / on) v(q) e (B.3.8)
o1(@) = inss / &7 B (nger) ¢ iGT (B.3.9)

Eine genauer Ausfithrung iiber die Ewald-Methode kann in [Sol82] nachgelesen werden.
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Anhang C

Rotationssymmetrisches
Vielfachstreuproblem

Im nachfolgenden Anhang soll der Nachweis erbracht werden, daf zwischen den einzelnen Am-
plitude ¥, der Wellenfunktionen von Elektronen, die zu Atomen innerhalb einer rotations-
ymmetrischen Anordnung gehoren, eine dhnliche Symmetrie besteht, wie die Blochsymmetrie
fiir Translationsgitter.

s=2

Abbildung C.1: Struktur und Indizierung der gegebenen pentagonalen Anordnung

Das gegebene Vielfachstreuproblem (Gl. C.0.1) ohne Blochsymmetrie soll den Ausgangs-
punkt darstellen. Die Abb. C.1 stellt die Struktur dar und definiert die Indizierung der Atome
(in mathematisch positivem Drehsinn). Der Index ,,0“ bezeichnet das Zentrum der Anord-
nung. Die Herleitung erfolgt fiir S Atome, d.h. die hier gezeigten Formeln gelten nicht nur fiir
ein Pentagon. Das Zentrum wird nicht mit in die Vielfachstreuung einbezogen.

Usr = Vo, + Z Psp,o FrVgp (C.0.1)
s'(#s),L’

Zunichst soll die Symmetrie innerhalb des Primérfeldes ¥, gezeigt werden. Selbiges ent-
steht durch eine ,1“-Welle im Drehimpulskanal Null, welche durch den Propagator Py, oo zu
den einzelnen Atomen propagiert wird. Fiihrt man jetzt fiir jedes der Atome auf dem Ring
ein Koordinatensystem ein, fiir welches gilt, daf die z-Richtung senkrecht auf der Ebene steht
und die x-Achse ins Zentrum zeigt. So ergibt sich fiir alle Atome innerhalb ihres Koordinaten-
systems das gleiche Wellenfeld. Transformiert man nun die verschiedene Koordinatensysteme
zu dem Koordinatensystem, dak fiir das erste Atom festgelegt wurde, so erhédlt man die ge-
suchte Symmetrie zwischen den einzelnen Wellenfunktionen. Diese Symmetrie soll nun in der
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Gleichungsfolge C.0.2 systematisch hergeleitet werden. Mit S ist dabei die Anzahl der Atome
auf dem Ring bezeichnet.

o, = 1P (C.0.2)
= ZP (L, L,0)n) (7))

= Z/dQ vLY;) b (7))
= D0 )
L

= (~)mnl) (7))
= B () )VARYE (75)
= 'R () VAT Y] (71)e

_ h’z(l) (,,-,—l)e—zm(s 12

—im(s—1)=F

_ \IJ(l)Le—zm(s 1) ?7"

Erkennbar ist, daf sich das einfallende Primérfeld eines beliebigen Atomes s auf dem Ring
durch den Faktor e ™ 1 aus dem Primérfeld U9, beim Atom 1 ableiten lift. Dadurch
148t sich das Vielfachstreuproblem mit Symmetrie im Primé&rfeld vereinfacht schreiben.

27

U, = \IJ(IJL —im(s—1)F + Z PsL s Fp gy (003)
s'(#s),L/
Nachfolgend soll gezeigt werden, dafl eine Aquivalente Symmetrie im Ergebnisfeld U,y

besteht. Dazu wird zunéchst der Zusammenhang zwischen den beiden Propagatoren Pgr, g1/
und P(,_1)r, (s~ 1)1 untersucht.

Plociypy(o—nyr = 9 DL, L, LA (7 1 = 7 1) (C.04)
7

Dabei ist der Betrag des Differenzvektors |#s_1 — ¥y 1| gleich dem Betrag des Differenzvek-
tors |Fs — ¥y|. Damit wirkt Die Verringerung des Indexes wirkt sich also im Radialteil der
Hankelfunktion nicht aus.

P(sfl)L,(s’*l)L' :ZF(LaZ’LI) hlgl)(h?s Tsr]) l\/_Y~(7°s 1= ""s’ 1) (C.0.5)
i

In den Kugelflichenfunktionen erfolgt eine Drehung des Einheitsvektors s 1 — ¢ _1 um einen
Winkel von —%“ in Bezug auf den Einheitsvekor 75 — 7. Geht man also wieder zu den Indizes
s, s iiber, spaltet sich innerhalb der Kugelflichenfunktion ein Faktor e "’ ab. Damit 1ift

sich die Formel wieder auf den Propagator Psr, o1/ zuriickfiihren, sofern man unter Beriick-
sichtigung der Auswahlregel m’ = m + m die Magnetquantenzahl m ersetzt.

o am
Ps sy = DPipgpe ™™ (C.0.6)
o
Psp s = P(s—l)L,(s’—l)L’ez(m m’s
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Es soll nun diese Verdnderung des Indexes nicht nur um einen Schritt ausgefiihrt werden,
sondern (s-1) mal. Dadurch wird der Propagator P,z vz auf den Propagator Py, (¢ (s_1))1/
zuriickgefiihrt. Der Winkel um den die richtungsabhéngigen Einheitsvektoren gedreht werden

ist damit —%”(s —1). Fiir den Propagator folgt analog zu C.0.6:

2m

Pypgp = Pip(o—(s—1yp €™ M5 67 (C.0.7)

Dieser transformierte Propagator soll nun in das Vielfachstreuproblem eingesetzt werden:

Ty = W e ™ DF 1 N Py gy €ECD R O
s'(#s),L’
Ty @™ DS = w4 Z Py (s —st1y1r ¢SO By Uy (C.0.8)
s'(#£s),L!

Man erkennt, daf fiir die einfallenden Felder die gleiche Symmetrie, wie fiir das Primérfeld
gilt. Durch Einsetzen der sich ergebenden Beziehung in das Vielfachstreuproblem wird diese
Aussage iiberpriift.

\PS’L’ = \I}(s’_s_i_l)[/e—im'z?"(s—l) (COQ)

im 2T (s
Uy = Uype msGl

12m 127

Uy, = Wi+ Y Ppsppr €™ SV R Oy e ™ 56D (C.0.10)
s/ (#s),L!

Ty, = WY+ Z Pip s —synyp Frr Ve_si1
S(E L

Da das Ergebnisfeld fiir das Atom ,1“ gesucht ist muf der Index s gleich ,1“ gesetzt wer-
den. Damit ergibt sich das Vielfachstreuproblem in der gesuchten Form. Die angenommene
Symmetrie stellt also eine Losung dar.

Ty, =09, + Z Py Fr¥sr (C.0.11)
s (#£1),L!

Unter Beriicksichtigung der gezeigten Symmetrie 14t sich das Problem in seiner entgiiltigen
Form schreiben. _

Ui, =99, + Z PlL,s'L'Fl'\I’lL'e_iml(sl_l)%r (C.0.12)

s'(#£1),L!

Diese Vielfachstreugleichung fiir eine rotationssymmetrische Struktur ist von der Dimensi-
on der Indizes der einzelnen Vektoren bedeutend kleiner und ermdoglicht eine weiterfithrende
analytische Betrachtung sowie eine Verringerung des numerischen Rechenaufwandes fiir com-
putergestiitzte Analyseprogramme.
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Anhang D

Die LMTO-Methode

Als Ausgangsbasis fiir die LMTO!-Methode dient die LCAO2-Methode und die Partialwellen-
methode. Aus diesem Grunde mochte ich kurz auf die beiden grundlegenden Konzepte einge-
hen. Im Anschluf daran sollen die zugrundeliegenden Ideen und Zusammenhénge dargestellt
werden. Eine ausfiihrliche Darstellung liefert zum Beispiel das Buch ,,The LMTO Method“ von
Skriver[Skr84].

D.1 LCAO-/ Partialwellen-Methode

Betrachtet man zum Beispiel ein Molekiil aus zwei Atomen, so ergeben sich jeweils fiir die
beiden Atome - durch Lésung der Schrédingergleichung - nichtiiberlappende Partialwellen zu
beliebigen Energien. Die Gesamtlosung ergibt sich dann aus den resonanten Partialwellen. Die
Teilésungen miissen dabei stetig differenzierbar ineinander iibergehen.

—— {5 — antibinden
¢ — bindend

Abbildung D.1: Partialwellen und Atomorbitale eines zweiatomigen Molekiiles

Bei der LCAO-Methode werden zur Konstruktion der Orbitale im Molekil |¥pr0) die
Atomorbitale |xa0) der jeweiligen freien Atome zugrundegelegt um daraus die Molekiilorbi-
tale zu entwickeln.

|¥mo0) =) Crrlxao) (D.1.1)
RL

Die einzelnen Atomorbitale werden durch lokalisierte, energieunabhéngige und iiberlappen-
de Wellenfunktionen x(r) beschrieben. Fiir das Wasserstoffmolekiil lassen sich zwei verschie-
dene Zusténde konstruieren. Dabei ist ein Zustand bindend, d.h. die benétigte Gesamtenergie

lengl.: (L)inear (M)uffin (T)in (O)rbital
2engl.: (L)inear (C)ombination of (A)tomic (O)rbitals
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ist kleiner als bei zwel freien Atomen - der andere Zustand ist antibindend.

& = x(r—a)—x(r—0>5) (D.1.2)
& = x(r—a)+x(r—>5

>

D.2 Philosphie hinter der LMTO-Methode

Die LMTO-Methode versucht nun fiir den gesamten Raum eine Losung |¥) der Schrodinger-
gleichung zu finden. Das angenommene Potential V () setzt sich aus einer Uberlagerung der
einzelnen Muffin-Tin-Potentiale VR—(F — R) zusammen. Dabei sind die einzelnen MT-Poteniale

kugelsymmetrisch® aufgebaut.

Um von der Schrédingergleichung zu einem Eigenwertproblem zu gelangen wird mittels
einer beliebigen Basis der Hamiltonoperator in eine Matrix proijeziert. Der Index n entspricht
der Hauptquantenzahl. Mit L wird die Gesamtdrehimpulsquantenzahl indiziert.

ﬁ|¢n> = Ep|vn) (D.2.1)
H,, = (n|H|L) (D.2.2)

Die Losungen der Schrodingergleichung sollen sich in folgender Art und Weise in dieser Basis
entwickeln lassen:

%n) = Chr|L) (D.2.3)
L

Fiir den Fall, daf die gewéhlte Basis nicht ortonormal ist ergibt sich fiir das Produkt (n|L)
nicht 6,7, sondern die Uberlabmatrix O.

O,1. = (n|L) (D.2.4)
Damit 186t sich das verallgemeinerte Eigenwertproblem schreiben als:
(H-E,0)|C),=0 (D.2.5)

Im Rahmen der LMTO-Methode wird eine Basis genutzt die sowohl orthogonal als auch még-
lichst energieunabhéngig ist. Desweiteren kann die Basis in einen winkelabhingigen und einen
radialen Teil seperatisiert werden. Ein mdoglicher Ansatz ist:

oi(E,r) + P(E) (5)l wenn r < 8

8

|L) = iYL (7) { (D.2.6)

()L wennr > s

Die Basislosungen im Innenraum r < s der MT-Kugel setzen sich aus regulidren Losungen
oi(E,r) der Schrodingergleichungen und den reguldren Losungen der Laplacegleichung J;(r)
zusammen. Damit ist die Basisfunktion fiir den Innenraum zwar keine Lésung der Schrédin-
gergleichung mehr, allerdings 186t sie sich so gut an die Aufenraumlésungen anschliefen. Im
Aufienraum dienen die singulidren Losungen K;(r) der Laplacegleichung als Basislosung.

2 20 1+(1+1)

~55 = o5 . ai(r) =0 (D.2.7)

3ASA: (A)tomic (S)phere (A)pproximation
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ai(r) = c1Jdi(r) + co Ky () (D.2.8)

Ji(r) = m (g)l (D.2.9)

Ki(r) = (f)l

r

Am Ubergang zwischen Innen- und Aufenraum miissen beide Funktionen glatt in einander
iibergehen. Das heifft ihre Funktionswerte und die 1. Ableitungen miissen gleich sein. Erfiillt
werden diese Bedingungen bei Gleichheit der logaritmischen Ableitung der beiden anzuschlie-
fenden Funktionen.

DIA(r)] = DIK(r)] (D.2.10)

i) Ki(r)
Ji(r) Ki(r)

(D.2.11)

Die Wronskideterminante wird oft genutz um einen glatten Ubergang zwischen zwei Funk-
tionen zu gewdhrleisten. In allgmeiner Form ergibt sich mittels der Wronskideterminante die
folgende Gleichung zur Anpassung der Funktionen an einander im Punkt s.

(1), o)} = rhi(r)fo(r) (Dfa(r)] = Dfa(r)]) (D.2.12)
(1), Ku(r)} = —2

2
{f1, fo{fs, fa}y = {f1, fsHfo, fa} — {fr, fal{ fo, f3} (D.2.13)
{f, fo}s f1(r) = {f, f1}, fa(r)

fr) = (Fifa)

Nach dieser Vorschrift ergibt sich die folgende Bedingung zur Anpassung der gewdhlten Innen-
bzw. Aussenraumlésung:

0, () = - | o g (5 BL A ~ (o (5 B K@MI()|  (D214)

D.3 Tail cancellation

Wir gehen jetzt zu einem Problem mit mehreren Atomkugeln. Fiir diesen Fall ergibt sich die
Basisfunktion aus der Uberlagerung der einzelnen Muffin-Tin Orbitale.

P(F) = arL¥rL(Fr) (D.3.1)
RL

Daraus folgt das innerhalb eines MT-Potentiales nicht nur Anteile aus den eigenen MT-
Orbitalen vorliegen sondern auch die Ausldufer der umliegenden MT-Orbitale (die sogenannten
tails). Damit dies nicht zu Fehlern fiihrt, werden an die Faktoren ary Bedingungen gestellt.

Z arr (Pri(E)érL,p1y — Sr,r') (D.3.2)
RL
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ANHANG D. DIE LMTO-METHODE

Sri,r 1 bezeichnet den kanonischen Strukturfaktor und Pg;(FE) die Potentialfunktion. Nicht-
triviale Losungen dieser Gleichung exisitieren fiir:

det (PRl(E)éRL,R’L’ — SRL,RILI) =0 (D33)

Diese Sekulargleichung zeigt die Separierung des Eigenwertproblems in zwei Teile. Einerseits
beschreibt die Potentialfunktion die individuellen Eigenschaften der einzlnen Atome, anderer-
seits flieRen durch den kanonischen Strukturfaktor (welcher energieunabhéngig ist) die Infor-
mationen iiber die Atompositionen ein.

D.4 Linearisierung

Ziel ist es energieunabhéngige Orbitale fiir die einzlnen MT-Orbitale zu definieren. Durch
Differenzierung der Schrédingergleichung nach der Energie erhdlt man folgende Beziehung:

[~A + Vr(r) — E] ¢rL(F, E) = ¢Rr,1(7, E) (D.4.1)
Die Funktion ¢g 1 (7, F) muff orthonormal sein und folgender Wronskibedingung geniigen:
{er,L(r,E),¢rL(r, E)}r=sp = —1 (D.4.2)
Nach einer Taylorentwicklung kann nun geschrieben werden:
orL(rE) =®r(r) + drr(r)(E — Eyp) + - (D.4.3)

Dieser Linearisierungsschritt stellt ein Kernelement der LMTO-Methode dar. Die Funkti-
on ®p 1(r) mub ebenso orthonormal sein und der gleichen Wronsikbedingung geniigen wie
¢g,1(7, E), dann stellen sie Losungen der Schrodingergleichung fiir den Energieeigenwert E,, g;
dar.
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Anhang E

Das Programmsystem abinit

Das verwendete Programmsystem ABINIT[GBC™'(2] ist unter ,http://www.abinit.org* ver-
fligbar, es handelt sich dabei um ein Projekt der Universite Catholique de Louvain. Innerhalb
der vorliegenden Arbeit wurde es verwendet um Elektronendichteverteilungen fiir die unter-
suchen Approximanten zu ermitteln.

Als theoretische Grundlage fiir das Programm dient die Dichtefunktionaltheorie, mit wel-
cher aus gegebenen Pseudopotentialen auf einer ebenen Wellenbasis die Elektronenstruktur
ermittelt wird. Der Minimierungsprozess fiir die Gesamtenergie erfolgt iterativ durch Anpas-
sung der Wellenfunktionen und des Pseudopotentials. Die verwendeten Pseudopotentiale wa-
ren Troullier-Martins Pseudopotentiale, welche von D.C. Allan und A. Khein generiert wurden
(erhaltlich auf der Homepage des Programmsystems).

Eine ausfiihrliche Darstellung der zugrundeliegenden Theorie liefert die Verdffentlichung:
Lterative minimization techniques for ab initio total-energy calculations: molecular dynamics
and conjugate gradients“[PTAT92].
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Anhang F

Struktur des AIPdCr Approximanten

Element Site X y z
1 Pd (1) 8g -0.0420 0.4295 0.1566
2 Cr (1) 4c 0.0401 0.2500 -0.1417
3 Cr (2) 4c 0.2352 0.2500 0.1727
4 Cr (3) 4c 0.0546 0.2500 0.4483
5 Cr (4) 4c 0.2281 0.2500 0.5146
6 Cr (5) 8g -0.1800 0.4475 0.6567
7 Al (1) 4c 0.0467 0.2500 0.2304
8 Al (2) 4c -0.1509 0.2500 0.1547
9 Al (3) 4c 0.0934 0.2500 0.6607
10 Al (4) 4c -0.1101 0.2500 -0.0630
11 Al (5) 4c 0.1228 0.2500 0.0259
12 Al (6) 4c 0.3989 0.2500 0.1286
13 Al (7) 4c 0.3188 0.2500 -0.1582
14 Al (8) 8g 0.1819 0.3475 0.3448
15 Al (9) 8g -0.2346 0.3769 -0.1635
16 Al (10) 8g -0.0485 0.3741 0.5477
17 Al (11) 8g -0.2285 0.3794 0.4763
18 Al (12) 8g -0.0460 0.3820 -0.2371
19 Al (13) 8g 0.1579 0.3816 -0.1623
20 Al (14) 8g -0.1875 0.4369 0.0379
21 Al (15) 8g 0.0148 0.4345 0.3495
22 Al (16) 8g 0.1347 0.4372 0.1593
23 Al (17) 8g -0.1841 0.4348 0.2741
24 Al (18) 8g 0.1292 0.4326 0.5272
25 Al (19) 8g -0.4886 0.4072 0.5309

Tabelle F.1: Raumgruppe: Pppq(NT.62), a=1.473nm, b=1.248nm, c=1.259nm [MYI97]
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