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: Decagonal Al-Ni-Co

Interesting Issues
e quasiperiodic and periodic structures co-exist
—period >4A due to Ni/Co redistribution [1]?
e hybridization of Al with Co/Ni
— Co-d below Ni-d [23]7 Pseudogap at ep |2]7
—Is there a Ni/Co network linked by Al ?
e anisotropic electronic 4] and thermal [5] transport

— anisotropic Lorenz number 7
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Methods Applied

e Einstein relation —> spectral diffusivties D, (€)
e CTKG formulas [11] = conductivities 0,,(T), thermopowers S,(T), and Lorenz numbers Ly, (T)

W(T) = e — (kpT)? —

ASA-LMTO [8] (special k-sets) = valence band states |7}, €;, state density n(e) after gaussian broadening
ABINIT [9] (GTH/TM pseudopotentials) = valence-charge densities
Linear-response theory

e Kubo-Greenwood with LMTO band states [11] = spectral conductivities 7,,(€), a = xyz
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icosahedral Al-TM-Approximants

Motivation

e recent experimental results of Kirihara et al. 7] show the
appearence of covalent bonds in AligaMmno24S112
and Aljp92Re24S112 approximants

e leading questions:

—relation between covalent bonding and anomal
transport properties 7

— mechanisms of stablizing the elementary clusters and a beec—
network of these clusters 7

Paths of Investigation

: : : 3
Energy-optimized approximants close to d-AlggNigoCoq [6] are 6 [n(e) de o conﬁl."mamon Qf high electron density (p > 0.04e/ A ) along
theoretically examined with respect to 12 (o ) " certain bond lines
e the spectral electronic properties and Taa(T) = L;o(T)  SaalT) = IelTaaa§T§ LQZ(T) _ 3 ( Z ) ( 2;;Q(T)T _ Saa(T)2> e response of these bonds to chemical or geometrical disturbtion
o the valence charge density. - ° mkp) \e'T*Faa(T) e comparison with common erystalline systems
N NG NG /
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Three Approximants: 50, 130, 210 atoms Spectral Curves: resistivity, state density, diffusivity Three Types of Stabilizing Covalent Bonds
Monte-Carlo, Pair Potentials [6] ASA-LMTO [8] and Kubo-Greewood
d-Aly,Ni;,Coy . 50 atoms 130 atoms 210 atoms e model structure of the 1/1-AlMnSi-Approximant [7],
50 atoms | Dos | | ! all S substituted by Al

O .
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e period along z: 41.08 A

e 2 decagonal planes:
large /small = top/bottom

Al grey, Ni black, Co blue

e :mportant:

20 A decagonal column

Valence Charge Density: level 0.02 - 0.06 ¢/A?
Model 130: ABINIT [9] and XCRYSDEN [10]
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e pseudogap close to ep: less pronounced
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e d resonances: Ni below Co with overlap Ni antibonding - Co bonding

Model 130 versus Experiment

A. Temperature Dependence: too Weak
model: AlgNiynCog, spiky structure removed, solid curves

experiment [4]: Al;3Nijg7Corq.3, bullets

color code: x-decagonal y-decagonal z-periodic
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e reststivity
non-metallic behavior
less pronounced,

....... i considerable phonon

. scattering required

e thermopower
right behavior,
however too small

e Lorenz number
only small deviations
from the
Wiedemann-Franz law

B. Transport Anisotropy: Realistic

system | 2 e o 00R)
experiment 35 173 5
model 50 10 50 D
model 130 10 103 10
model 210 15 90 §

Approximants to d-AINiCo?

e Yes, as the structure is concerned [6].

e Yes, as the A-Ni/Co network is concerned.

e Less clearly as the transport properties are

concerned. Decoration problems?

/
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e deep pseudogap in the DOS and
high resistivity (> 500ufdem)

e MacKay cluster as bcc-ordered elementary module

e classification of the bonds according to the charge distribution

Type of bonds | Bond-distance Role S
Mn-Mn 4.5 A cluster network i
Al-Mn 2.4 A MacKay cluster f.g? o A I
_ . alernce-electron density cut:
Al-Al 2.4 A innner MacKay shell g 0.02-0.04 ¢/A®
= ABINIT [9], XCRYSDEN [10]

Structural Influences on the Bonds

A. No Influence of Lattice Constant on Hybridization Behavior

(e—g) / eV

a = a,+ %ao
e real strurcture is the most stable structure of
this type

e no tn fluence of the lattice constant on bond-
Ing structure

e highest resistivity in two cases: smallest a and the

realistic case a = ag

/ Left : Total energy and DOS(Ey), ABINIT [9]
| - | | Right : DOS(EF) and resistivity,

\q@/\\ | ASA-LMTO [8] / Kubo-Greenwood [11]
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B. Importance of the Glue-Atom
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Common Crystal AlgMn

e strong Mn-Al bonds and weak Al-Al bonds
e no Mn-Mn bridges

N

undisturbed glue-sector disturbed glue-sector

Black Curve: DOS of the original cluster
Red Curve: DOS of the varied cluster

— vanishing of the deep pseudogap
at E in the case of glue-sector variation

e relaxing the glue-atom positions by a Morse potential

e Mn-Mn bridges very senitive to the glue positions

e mutual stabilization of the MacKays by order of the glue-sector

e broad Hume-Rothery pseudogap in the DOS, p < 100uf2em

e hybridization behavior similar to the approximants

24
al au.

Positions C. Altering Decoration / AlReSi

DOS

Partizipat. p/pQ cm weights

isolevel at 0.04e/ A’

e model-cluster — all Si on sc-MacKay positions
e similar bonding behavior compared with AlMn
e S1 atoms stabilize the MacKay-clusters

e very high resistivity peak at Er (900.uf2em)
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Conclusions

e Realistic simulations of materials should consider the valence electrons in two-fold respects, (i) in the
static respect on minimizing the total energy, and (ii) in the dynamic respect on reproducing the
observed electronic transport parameters.

e Monitoring the valence-charge density reveals critical parts of the stabilizing network.

e The examined crystalline approximants to quasicrystals bear transition-metal (TM) networks with
direct TM-TM links, contrary to related non-approximant systems.

Acknowledgement This work is supported by the ”Deutsche Forschungsgemeinschaft“ (SPQK).




